##TRW chronology (mm) and inside-bark radii
data(Pchron,envir = environment())
## Parameters of allometric model to compute Diameter at Breast
## Height over bark (DBH, cm) from diameter inside bark (dib, cm)
## and Total Tree Biomass (TTB, kg tree -1 ) from DBH (Lara
## et. al. 2013):
biom_param <- c(2.87, 0.85, 0.05, 2.5)
## Modeling tree-biomass fluctuations while accounting for
## within-plot source variability (see defaults in "modelFrame"
## function)
## \donttest{
## trwf <- modelFrame(Pchron,
## to = 'cm',
## MoreArgs = list(mp = c(2,1, biom_param)),
## log.t = FALSE,
## on.time = FALSE)
## }
## Detrending the fluctuations by fitting a (l)td-form model
## with Maximum-likelihood method (ML):
## \donttest{
## pdata <- trwf$'model'$'data'
## rlme <- frametoLme(pdata,
## form = 'tdForm',
## method = 'ML',
## log.t = TRUE)
## summary(rlme$model)
## }
##a plot of the modeled fluctuations:
## \donttest{
## d <- nlme::groupedData(lmeForm(rlme$fluc,lev.rm = 1),data = rlme$fluc)
## plot(d,groups = ~ sample,auto.key = TRUE)
## }
## A model of aridity:
## \donttest{
## cf <- modelFrame(PTclim05,
## lv = list('year','year'),
## fn = list('moveYr','wlai'),
## form = NULL)
## summary(cf)
## }
## An lme model of aridity at 'plot' level:
## \donttest{
## cdata <- cf$'model'$'data'
## rmod <- frametoLme(cdata,form = 'lmeForm')
## summary(rmod$model)
## rk <- nlme::groupedData(lmeForm(rmod$fluc),data=rmod$fluc)
## plot(rk,ylab = 'detrended AI')
## }
Run the code above in your browser using DataLab