##TRW chronology (mm) and inside-bark radii
data(Pchron,envir = environment())
## Parameters of allometric model to compute Diameter at Breast
## Height over bark (DBH, cm) from diameter inside bark (dib, cm)
## and Total Tree Biomass (TTB, kg tree -1 ) from DBH (Lara
## et. al. 2013):
biom_param <- c(2.87, 0.85, 0.05, 2.5)
## Modeling tree-biomass fluctuations while accounting for
## within-plot source variability (see defaults in "modelFrame"
## function)
# \donttest{
trwf <- modelFrame(Pchron,
to = 'cm',
MoreArgs = list(mp = c(2,1, biom_param)),
log.t = FALSE,
on.time = FALSE)
# }
## Detrending the fluctuations by fitting a (l)td-form model
## with Maximum-likelihood method (ML):
# \donttest{
pdata <- trwf$'model'$'data'
rlme <- frametoLme(pdata,
form = 'tdForm',
method = 'ML',
log.t = TRUE)
summary(rlme$model)
# }
##a plot of the modeled fluctuations:
# \donttest{
d <- groupedData(lmeForm(rlme$fluc,lev.rm = 1),data = rlme$fluc)
plot(d,groups = ~ sample,auto.key = TRUE)
# }
## A model of aridity:
# \donttest{
cf <- modelFrame(PTclim05,
lv = list('year','year'),
fn = list('moveYr','wlai'),
form = NULL)
summary(cf)
# }
## An lme model of aridity at 'plot' level:
# \donttest{
cdata <- cf$'model'$'data'
rmod <- frametoLme(cdata,form = 'lmeForm')
summary(rmod$model)
rk <- groupedData(lmeForm(rmod$fluc),data=rmod$fluc)
plot(rk,ylab = 'detrended AI')
# }
Run the code above in your browser using DataLab