Learn R Programming

BMA (version 3.18.19)

summary.bic: Summaries of Bayesian model averaging objects

Description

summary and print methods for Bayesian model averaging objects.

Usage

# S3 method for bicreg
summary(object, n.models = 5, 
         digits = max(3, getOption("digits") - 3), 
         conditional = FALSE, display.dropped = FALSE, ...)

# S3 method for bic.glm summary(object, n.models = 5, digits = max(3, getOption("digits") - 3), conditional = FALSE, display.dropped = FALSE, ...)

# S3 method for bic.surv summary(object, n.models = 5, digits = max(3, getOption("digits") - 3), conditional = FALSE, display.dropped = FALSE, ...)

# S3 method for glib summary(object, n.models = 5, digits = max(3, getOption("digits") - 3), conditional = FALSE, index.phi=1, ...)

# S3 method for mc3 summary(object, n.models = 5, digits = max(3, getOption("digits") - 3), ...)

# S3 method for bicreg print(x, digits = max(3, getOption("digits") - 3), ...)

# S3 method for bic.glm print(x, digits = max(3, getOption("digits") - 3), ...)

# S3 method for bic.surv print(x, digits = max(3, getOption("digits") - 3), ...)

# S3 method for mc3 print(x, digits = max(3, getOption("digits") - 3), n.models = nrow(x$variables), ...)

Arguments

object

object of type 'bicreg', 'bic.glm', 'bic.surv', 'glib' or 'mc3'

x

object of type 'bicreg', 'bic.glm', 'bic.surv', 'glib' or 'mc3'

n.models

optional number specifying the number of models to display in summary

digits

optional number specifying the number of digits to display

conditional

optional logical value specifying whether to display conditional expectation and standard deviation

display.dropped

optional logical value specifying whether to display the names of any variables dropped before model averaging takes place

index.phi

optional number specifying which value of phi to use if multiple values of phi were run. Applies to glib objects only

...

other parameters to be passed to print.default

Author

Ian Painter ian.painter@gmail.com

Details

The print methods display a view similar to print.lm or print.glm. The summary methods display a view specific to model averaging.

Examples

Run this code
# logistic regression
library("MASS")
data(birthwt)
y<- birthwt$lo
x<- data.frame(birthwt[,-1])
x$race<- as.factor(x$race)
x$ht<- (x$ht>=1)+0
x<- x[,-9]
x$smoke <- as.factor(x$smoke)
x$ptl<- as.factor(x$ptl)
x$ht <- as.factor(x$ht)
x$ui <- as.factor(x$ui)

glm.out1<- bic.glm(x, y, OR = 20, glm.family="binomial", 
                   factor.type=TRUE)
summary(glm.out1, conditional = TRUE)

Run the code above in your browser using DataLab