Calculates the second order Akaike's information criterion score for models of interest.
Usage
AICc(n, k,LogLik)
Arguments
n
number of taxa for the given phylogenetic tree. It represents the sample size(the number of species on the tip of phylogeny).
k
number of free parameters in the model
LogLik
the minimum of the negative log-likelihood value obtained by optitimizing the likelihood function.
Value
The AICc values.
Details
'AICc' is a function to compute the AICc values and is valid to select among different models. $AICc = 2*n*k/(n-k-1) -2 log L$ where $L$ is the maximum likelihood for the model.
References
Burnham, K.P., and D.R. Anderson. 2004. Model selection and inference: a practical information-theoretic approach. Sec. Ed. Springer, New York.
#assign the size n<-5#assign the number of parameter k<-3#assign the negative log likelihood value. LogLik<- -2#compute the AICc score AICc(n,k,LogLik)
# result AICc value of 26.