# NOT RUN {
  ## if you want to load the `mini' example Brown Frog dataset
  data(MacrocnemisRawSeqs)
  data(MacrocnemisCoordsLocsMini)
  rawSeqs <- MacrocnemisRawSeqs
  coordsLocs <- MacrocnemisCoordsLocsMini
  dims <- 3 #this is 2 if you only have geographical longitude/latitude. 
#(add 1 for each environmental or phenotypic covariate)
maxMig <- 2 #you will need a higher maximum number of migrations, suggest 7
ds <- 0 #start with ds=0 and increase to 1 and then to 2
iter <- 1000 #you will need far more iterations for convergence, start with 100,000
postSamples <- 100 #you will need at least 100 saved posterior samples
#run the Markov chain Monte Carlo sampler
bpecout <- bpec.mcmc(rawSeqs,coordsLocs,maxMig,iter,ds,postSamples,dims)
par(mar=c(0,0,0,0),pty="m",mfrow=c(1,2))  #no plot margins, plot contours and tree side-by-side
# plot geographical cluster contour map
bpec.contourPlot(bpecout,GoogleEarth=0) 
# plot tree network with cluster indicators
bpec.Tree <- bpec.treePlot(bpecout)   
# now also plot the environmental covariates
 bpec.covariatesPlot(bpecout) 
 
 # to produce files for external software, use
 # bpec.Geo <- bpec.geoTree(bpecout,file="GoogleEarthTree.kml")
# }
# NOT RUN {
# if you want to load the example burnet moth dataset
data(TransalpinaRawSeqs)
data(TransalpinaCoordsLocs)
rawSeqs <- TransalpinaRawSeqs
coordsLocs <- TransalpinaCoordsLocs
##if you want to use your own dataset, use setwd() to enter the correct folder, 
##then run the command below, changing the input parameters if necessary
 #rawSeqs <- bpec.loadSeq('haplotypes.nex')
 #coordsLocs <- bpec.loadCoords("coordsLocsFile.txt")
 ## to set phenotypic/environmental covariate names manually, use (as appropriate)
# colnames(CoordsLocs)[1:dims] <- c('lat','long','cov1','cov2','cov3')  
## where dims is the corresponding number of measurements available 
## (2 for latitude and longitude only, add one for each additional available measurement) 
 
dims <- 2 #this is 2 if you only have geographical longitude/latitude. 
#(add 1 for each environmental or phenotypic covariate)
maxMig <- 5 #you will need a higher maximum number of migrations, suggest 7
ds <- 0 #start with ds=0 and increase to 1 and then to 2
iter <- 10000 #you will need far more iterations for convergence, start with 100,000
postSamples <- 2 #you will need at least 100 saved posterior samples
#run the Markov chain Monte Carlo sampler
bpecout <- bpec.mcmc(rawSeqs,coordsLocs,maxMig,iter,ds,postSamples,dims)
par(mar=c(0,0,0,0),pty="m",mfrow=c(1,2)) #No plot margins. Contours and tree side-by-side
# plot geographical cluster contour map
bpec.contourPlot(bpecout, GoogleEarth=0, mapType = 'plain') 
# plot tree network with cluster indicators
bpec.Tree <- bpec.treePlot(bpecout)  
## if you want to load the example Brown Frog dataset
data(MacrocnemisRawSeqs)
data(MacrocnemisCoordsLocs)
rawSeqs <- MacrocnemisRawSeqs
coordsLocs <- MacrocnemisCoordsLocs
dims <- 8 #this is 2 if you only have geographical longitude/latitude. 
#(add 1 for each environmental or phenotypic covariate)
maxMig <- 4 #you will need a higher maximum number of migrations, suggest 7
ds <- 2 #start with ds=0 and increase to 1 and then to 2
iter <- 10000 #you will need far more iterations for convergence, start with 100,000
postSamples <- 2 #you will need at least 100 saved posterior samples
#run the Markov chain Monte Carlo sampler
bpecout <- bpec.mcmc(rawSeqs,coordsLocs,maxMig,iter,ds,postSamples,dims)
par(mar=c(0,0,0,0),pty="m",mfrow=c(1,2))  #no plot margins, plot contours and tree side-by-side
# plot geographical cluster contour map
bpec.contourPlot(bpecout,GoogleEarth=0) 
# plot tree network with cluster indicators
bpec.Tree <- bpec.treePlot(bpecout)   
# now also plot the environmental covariates
 par(mfrow=c(2,3)) #split the plot window into 2x3 to fit all the covariates
 bpec.covariatesPlot(bpecout) 
 
 bpec.Geo <- bpec.geoTree(bpecout,file="GoogleEarthTree.kml")
 
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab