data(ma2)
model <- newModel(fnSimVec = ma2_sim_vec, fnSum = ma2_sum, simArgs = list(TT = 10),
theta0 = ma2$start, fnLogPrior = ma2_prior)
set.seed(100)
# generate 1000 simualtions from the ma2 model
x <- simulation(model, n = 1000, theta = c(0.6, 0.2))$x
corr1 <- cor(x) # traditional correlation matrix
corr2 <- gaussianRankCorr(x) # Gaussian rank correlation matrix
oldpar <- par()
par(mfrow = c(1, 2))
image(corr1, main = 'traditional correlation matrix')
image(corr2, main = 'Gaussian rank correlation matrix')
par(mfrow = oldpar$mfrow)
std <- apply(x, MARGIN = 2, FUN = sd) # standard deviations
cor2cov(gaussianRankCorr(x), std) # convert to covariance matrix
Run the code above in your browser using DataLab