data(ma2)
ssy <- ma2_sum(ma2$data)
m <- newModel(fnSim = ma2_sim, fnSum = ma2_sum, simArgs = ma2$sim_args,
theta0 = ma2$start)
ssx <- simulation(m, n = 300, theta = c(0.6, 0.2), seed = 10)$ssx
# the standard Gaussian synthetic likelihood (the likelihood estimator used in BSL)
gaussianSynLike(ssy, ssx)
# the Gaussian synthetic likelihood with glasso shrinkage estimation
# (the likelihood estimator used in BSLasso)
gaussianSynLike(ssy, ssx, shrinkage = 'glasso', penalty = 0.1)
# the Gaussian synthetic likelihood with Warton's shrinkage estimation
gaussianSynLike(ssy, ssx, shrinkage = 'Warton', penalty = 0.9)
# the Gaussian synthetic likelihood with Warton's shrinkage estimation and Whitening transformation
W <- estimateWhiteningMatrix(20000, m)
gaussianSynLike(ssy, ssx, shrinkage = 'Warton', penalty = 0.9, whitening = W)
Run the code above in your browser using DataLab