if (FALSE) {
require(doParallel) # You can use a different package to set up the parallel backend
require(MASS)
require(elliplot)
# Loading the data for this example
data(mgnk)
model <- newModel(fnSim = mgnk_sim, fnSum = mgnk_sum, simArgs = mgnk$sim_args, theta0 = mgnk$start,
thetaNames = expression(a[1],b[1],g[1],k[1],a[2],b[2],g[2],k[2],
a[3],b[3],g[3],k[3],delta[12],delta[13],delta[23]))
# Performing BSL (reduce the number of iterations M if desired)
# Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultMgnkBSL <- bsl(mgnk$data, n = 60, M = 80000, model = model, covRandWalk = mgnk$cov,
method = "BSL", parallel = FALSE, verbose = 1L, plotOnTheFly = TRUE)
stopCluster(cl)
registerDoSEQ()
show(resultMgnkBSL)
summary(resultMgnkBSL)
plot(resultMgnkBSL, which = 2, thin = 20)
# Performing uBSL (reduce the number of iterations M if desired)
# Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultMgnkuBSL <- bsl(mgnk$data, n = 60, M = 80000, model = model, covRandWalk = mgnk$cov,
method = "uBSL", parallel = FALSE, verbose = 1L)
stopCluster(cl)
registerDoSEQ()
show(resultMgnkuBSL)
summary(resultMgnkuBSL)
plot(resultMgnkuBSL, which = 2, thin = 20)
# Performing tuning for BSLasso
ssy <- mgnk_sum(mgnk$data)
lambda_all <- list(exp(seq(-2.5,0.5,length.out=20)), exp(seq(-2.5,0.5,length.out=20)),
exp(seq(-4,-0.5,length.out=20)), exp(seq(-5,-2,length.out=20)))
# Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
set.seed(100)
sp_mgnk <- selectPenalty(ssy, n = c(15, 20, 30, 50), lambda = lambda_all, theta = mgnk$start,
M = 100, sigma = 1.5, model = model, method = "BSL", shrinkage = "glasso", standardise = TRUE,
parallelSim = TRUE, parallelSimArgs = list(.packages = "MASS", .export = "ninenum"),
parallelMain = TRUE)
stopCluster(cl)
registerDoSEQ()
sp_mgnk
plot(sp_mgnk)
# Performing BSLasso with a fixed penalty (reduce the number of iterations M if desired)
# Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultMgnkBSLasso <- bsl(mgnk$data, n = 20, M = 80000, model = model, covRandWalk = mgnk$cov,
method = "BSL", shrinkage = "glasso", penalty = 0.3, standardise = TRUE, parallel = FALSE,
verbose = 1L)
stopCluster(cl)
registerDoSEQ()
show(resultMgnkBSLasso)
summary(resultMgnkBSLasso)
plot(resultMgnkBSLasso, which = 2, thin = 20)
# Performing semiBSL (reduce the number of iterations M if desired)
# Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultMgnkSemiBSL <- bsl(mgnk$data, n = 60, M = 80000, model = model, covRandWalk = mgnk$cov,
method = "semiBSL", parallel = FALSE, verbose = 1L)
stopCluster(cl)
registerDoSEQ()
show(resultMgnkSemiBSL)
summary(resultMgnkSemiBSL)
plot(resultMgnkSemiBSL, which = 2, thin = 20)
# Plotting the results together for comparison
# plot using the R default plot function
oldpar <- par()
par(mar = c(4, 4, 1, 1), oma = c(0, 1, 2, 0))
combinePlotsBSL(list(resultMgnkBSL, resultMgnkuBSL, resultMgnkBSLasso, resultMgnkSemiBSL),
which = 1, thin = 20, label = c("bsl", "ubsl", "bslasso", "semiBSL"),
col = c("red", "yellow", "blue", "green"), lty = 2:5, lwd = 1)
mtext("Approximate Univariate Posteriors", outer = TRUE, line = 0.75, cex = 1.2)
# plot using the ggplot2 package
combinePlotsBSL(list(resultMgnkBSL, resultMgnkuBSL, resultMgnkBSLasso, resultMgnkSemiBSL),
which = 2, thin = 20, label=c("bsl","ubsl","bslasso","semiBSL"),
options.color=list(values=c("red","yellow","blue","green")),
options.linetype = list(values = 2:5), options.size = list(values = rep(1, 4)),
options.theme = list(plot.margin = grid::unit(rep(0.03,4),"npc"),
axis.title = ggplot2::element_text(size=12), axis.text = ggplot2::element_text(size = 8),
legend.text = ggplot2::element_text(size = 12)))
par(mar = oldpar$mar, oma = oldpar$oma)
}
Run the code above in your browser using DataLab