if (FALSE) {
require(doParallel) # You can use a different package to set up the parallel backend
data(toad)
## run standard BSL for the simulated dataset
model1 <- newModel(fnSim = toad_sim, fnSum = toad_sum, theta0 = toad$theta0,
fnLogPrior = toad_prior, simArgs = toad$sim_args_simulated,
thetaNames = expression(alpha,gamma,p[0]))
paraBound <- matrix(c(1,2,0,100,0,0.9), 3, 2, byrow = TRUE)
# Performing BSL (reduce the number of iterations M if desired)
# Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultToadSimulated <- bsl(toad$data_simulated, n = 1000, M = 10000, model = model1,
covRandWalk = toad$cov, logitTransformBound = paraBound,
parallel = TRUE, verbose = 1L, plotOnTheFly = 100)
stopCluster(cl)
registerDoSEQ()
show(resultToadSimulated)
summary(resultToadSimulated)
plot(resultToadSimulated, thetaTrue = toad$theta0, thin = 20)
## run standard BSL for the real dataset
model2 <- newModel(fnSim = toad_sim, fnSum = toad_sum, theta0 = toad$theta0,
fnLogPrior = toad_prior, simArgs = toad$sim_args_real,
thetaNames = expression(alpha,gamma,p[0]))
paraBound <- matrix(c(1,2,0,100,0,0.9), 3, 2, byrow = TRUE)
# Performing BSL (reduce the number of iterations M if desired)
# Opening up the parallel pools using doParallel
cl <- makeCluster(min(detectCores() - 1,2))
registerDoParallel(cl)
resultToadReal <- bsl(toad$data_real, n = 1000, M = 10000, model = model2,
covRandWalk = toad$cov, logitTransformBound = paraBound,
parallel = TRUE, verbose = 1L, plotOnTheFly = 100)
stopCluster(cl)
registerDoSEQ()
show(resultToadReal)
summary(resultToadReal)
plot(resultToadReal, thetaTrue = toad$theta0, thin = 20)
}
Run the code above in your browser using DataLab