# NOT RUN {
# The example datasets potato_visual and potato_weighing contain complete
# rankings of 20 items, by 12 assessors. We first analyse these using the Mallows
# model:
model_fit <- compute_mallows(potato_visual)
# Se the documentation to compute_mallows for how to assess the convergence of the algorithm
# Having chosen burin = 1000, we compute posterior intervals
model_fit$burnin <- 1000
# First we compute the interval for alpha
compute_posterior_intervals(model_fit, parameter = "alpha")
# We can reduce the number decimals
compute_posterior_intervals(model_fit, parameter = "alpha", decimals = 2)
# By default, we get a 95 % interval. We can change that to 99 %.
compute_posterior_intervals(model_fit, parameter = "alpha", level = 0.99)
# We can also compute the posterior interval for the latent ranks rho
compute_posterior_intervals(model_fit, parameter = "rho")
# }
# NOT RUN {
# Posterior intervals of cluster probabilities
# We can run a mixture of Mallows models, using the n_clusters argument
# We use the sushi example data. See the documentation of compute_mallows for a more elaborate
# example
model_fit <- compute_mallows(sushi_rankings, n_clusters = 5)
# Keeping the burnin at 1000, we can compute the posterior intervals of the cluster probabilities
compute_posterior_intervals(model_fit, burnin = 1000, parameter = "cluster_probs")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab