if (FALSE) {
# simulate data
set.seed(1)
data <- list(
x = rnorm(10),
N = 10
)
data$x
# define priors
priors_list <- list(mu = prior("normal", list(0, 1)))
# define likelihood for the data
model_syntax <-
"model{
for(i in 1:N){
x[i] ~ dnorm(mu, 1)
}
}"
# fit the models
fit <- JAGS_fit(model_syntax, data, priors_list)
# define log posterior for bridge sampling
log_posterior <- function(parameters, data){
sum(dnorm(data$x, parameters$mu, 1, log = TRUE))
}
# get marginal likelihoods
marglik <- JAGS_bridgesampling(fit, log_posterior, data, priors_list)
}
Run the code above in your browser using DataLab