Learn R Programming

BayesX (version 0.3-3)

hpd: Computing Highest Posterior Density (HPD) Intervals

Description

Compute approximate HPD intervals out of MCMC-samples in BayesX

Usage

hpd(data, alpha = 0.05, ...)
hpd.coda(data, alpha = 0.05)

Arguments

data

Either the name of a file or a data frame containing the sample.

alpha

A numeric scalar in the interval (0,1) such that 1 - alpha is the target probability content of the intervals.. The default is alpha = 0.05.

...

Further parameters to be passed to the internal call of optim and integrate.

Author

Nadja Klein

Details

hpd computes the HPD interval based on a kernel density estimate of the samples. hpd.coda computes the HPD interval with the function HPDinterval available in package coda.

Examples

Run this code
res <- read.table(system.file("examples/nonparametric_f_x_pspline_sample.raw",
  package="BayesX"), header = TRUE)
hpd(res)
hpd.coda(res)

Run the code above in your browser using DataLab