To be fitted an FROC model.
This data was calculated from an example dataset which appears in Chakraborty's JAFROC.
The author has ordered
the dataset dataList.Chakra.Web
(or dd
)
so that the modality ID means the order of AUC.
For example modality ID = 1 means its AUC is the highest.
modalityID = 2 means that
its AUC is the secondly high AUC.
So, let \(A_1,A_2,A_3,A_4,A_5\) be the AUCs for the modality ID \(1,2,3,4,5\), respectively.
Then it follows that
$$A_1 > A_2 > A_3 > A_4 > A_5.$$
So, modality ID in this dataset corresponds
the modality ID
of dataList.Chakra.Web
(or dd
)
as (4 2 1 5 3).
That is, let us denote the modality ID of this dataset
(1',2',3',4',5') and
let modality ID
of the dataset named dataList.Chakra.Web
(or dd
) be (1,2,3,4,5).
Then we can write the correspondence as follows;
$$(1',2',3',4',5') = (4, 2, 1, 5, 3).$$
Contents:
Multiple readers and Multiple modalities case, i.e., MRMC case
---------------------------------------------------------------------------------------------------
ModalityID | ReaderID | Confidence levels | No. of false alarms | No. of hits. |
q |
m |
c |
f |
h |
--------------------- | -------------------- | ----------------------------- | ------------------------- | ----------------------- |
1 | 1 | 5 | 1 | 61 |
1 | 1 | 4 | 4 | 19 |
1 | 1 | 3 | 18 | 12 |
1 | 1 | 2 | 21 | 9 |
1 | 1 | 1 | 23 | 3 |
1 | 2 | 5 | 1 | 16 |
1 | 2 | 4 | 1 | 29 |
1 | 2 | 3 | 0 | 34 |
1 | 2 | 2 | 11 | 1 |
1 | 2 | 1 | 35 | 0 |
1 | 3 | 5 | 6 | 52 |
1 | 3 | 4 | 14 | 29 |
1 | 3 | 3 | 37 | 10 |
1 | 3 | 2 | 36 | 4 |
1 | 3 | 1 | 18 | 3 |
1 | 4 | 5 | 0 | 10 |
1 | 4 | 4 | 2 | 16 |
1 | 4 | 3 | 4 | 23 |
1 | 4 | 2 | 18 | 43 |
1 | 4 | 1 | 25 | 15 |
2 | 1 | 5 | 1 | 52 |
2 | 1 | 4 | 1 | 25 |
2 | 1 | 3 | 21 | 13 |
2 | 1 | 2 | 24 | 4 |
2 | 1 | 1 | 23 | 1 |
2 | 2 | 5 | 1 | 27 |
2 | 2 | 4 | 1 | 28 |
2 | 2 | 3 | 5 | 29 |
2 | 2 | 2 | 30 | 1 |
2 | 2 | 1 | 40 | 0 |
2 | 3 | 5 | 2 | 53 |
2 | 3 | 4 | 19 | 29 |
2 | 3 | 3 | 31 | 13 |
2 | 3 | 2 | 56 | 2 |
2 | 3 | 1 | 42 | 4 |
2 | 4 | 5 | 2 | 9 |
2 | 4 | 4 | 0 | 16 |
2 | 4 | 3 | 2 | 22 |
2 | 4 | 2 | 30 | 43 |
2 | 4 | 1 | 32 | 14 |
3 | 1 | 5 | 0 | 50 |
3 | 1 | 4 | 4 | 30 |
3 | 1 | 3 | 20 | 11 |
3 | 1 | 2 | 29 | 5 |
3 | 1 | 1 | 21 | 1 |
3 | 2 | 5 | 0 | 15 |
3 | 2 | 4 | 0 | 29 |
3 | 2 | 3 | 6 | 29 |
3 | 2 | 2 | 15 | 1 |
3 | 2 | 1 | 22 | 0 |
3 | 3 | 5 | 1 | 39 |
3 | 3 | 4 | 15 | 31 |
3 | 3 | 3 | 18 | 8 |
3 | 3 | 2 | 31 | 10 |
3 | 3 | 1 | 19 | 3 |
3 | 4 | 5 | 1 | 10 |
3 | 4 | 4 | 2 | 8 |
3 | 4 | 3 | 4 | 25 |
3 | 4 | 2 | 16 | 45 |
3 | 4 | 1 | 17 | 14 |
4 | 1 | 5 | 0 | 35 |
4 | 1 | 4 | 2 | 29 |
4 | 1 | 3 | 19 | 18 |
4 | 1 | 2 | 23 | 9 |
4 | 1 | 1 | 18 | 0 |
4 | 2 | 5 | 0 | 17 |
4 | 2 | 4 | 2 | 27 |
4 | 2 | 3 | 6 | 24 |
4 | 2 | 2 | 10 | 0 |
4 | 2 | 1 | 30 | 0 |
4 | 3 | 5 | 2 | 34 |
4 | 3 | 4 | 25 | 33 |
4 | 3 | 3 | 40 | 7 |
4 | 3 | 2 | 29 | 13 |
4 | 3 | 1 | 24 | 2 |
4 | 4 | 5 | 1 | 12 |
4 | 4 | 4 | 1 | 16 |
4 | 4 | 3 | 4 | 21 |
4 | 4 | 2 | 24 | 35 |
4 | 4 | 1 | 32 | 15 |
5 | 1 | 5 | 1 | 43 |
5 | 1 | 4 | 7 | 29 |
5 | 1 | 3 | 13 | 11 |
5 | 1 | 2 | 28 | 6 |
5 | 1 | 1 | 19 | 0 |
5 | 2 | 5 | 0 | 18 |
5 | 2 | 4 | 1 | 29 |
5 | 2 | 3 | 7 | 21 |
5 | 2 | 2 | 7 | 0 |
5 | 2 | 1 | 31 | 0 |
5 | 3 | 5 | 7 | 43 |
5 | 3 | 4 | 15 | 29 |
5 | 3 | 3 | 28 | 6 |
5 | 3 | 2 | 41 | 7 |
5 | 3 | 1 | 9 | 1 |
5 | 4 | 5 | 0 | 10 |
5 | 4 | 4 | 2 | 14 |
5 | 4 | 3 | 5 | 19 |
5 | 4 | 2 | 24 | 32 |
---------------------------------------------------------------------------------------------------
Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.