# NOT RUN {
#========================================================================================
# Shape of signal distribution strongly influences the value of AUC, so in the following
# the author shows how it affects the estimates of AUCs.
# We consider two data examples, one is a low AUC and the other is a high AUC.
# In the high AUC case, the Signal Gaussain will be low variance and
# in the low AUC case, the variance will desperse. 2019 August 4, 2019 Dec 17
#========================================================================================
# ----- High AUC case --------
viewdata(dataList.High)
fit.High <- fit_Bayesian_FROC(dataList.High,ite=111)
draw_latent_signal_distribution(fit.High)
# ----- Low AUC case --------
viewdata(dataList.Low)
fit.Low <- fit_Bayesian_FROC(dataList.Low)
draw_latent_signal_distribution(fit.Low)
#--------------------------------------------------------------------------------------
# 2) For submission (without color)
#--------------------------------------------------------------------------------------
fit <- fit_Bayesian_FROC(
dataList = dataList.Chakra.1.with.explantation
)
# With legends
draw_latent_signal_distribution(fit,
dark_theme = FALSE,
color = TRUE,
density = 11
)
#' Without legends
draw_latent_signal_distribution(fit,
dark_theme = FALSE,
color = TRUE,
mathmatical.symbols = FALSE
)
# 2019 Sept. 5
# 2020 March 12
Close_all_graphic_devices() # 2020 August
# }
# NOT RUN {
# dottest
# }
Run the code above in your browser using DataLab