# NOT RUN {
# }
# NOT RUN {
fit <- fit_Bayesian_FROC(
ite = 1111,
summary = FALSE ,
dataList = BayesianFROC::dataList.Chakra.1 )
#======= The first example ======================================================
TPs.FPs <- get_samples_from_Posterior_Predictive_distribution(fit)
#======= The Second Example: Short cut ===========================================
# If user has no time, then plot.replicated.points=FALSE will help you.
# By setting FALSE, the replicated data from the posterior predictive
# distribution does not draw, and hence the running time of function become shorter.
TPs.FPs <- get_samples_from_Posterior_Predictive_distribution(fit,
plot.replicated.points = FALSE)
# Close the graphic device to avoid errors in R CMD check.
grDevices::dev.new();plot(stats::runif(100),stats::runif(100))
#================The third example: From Hand made data to fitting ==========
# To draw the scatter plots of hits and false alarms synthesized from the posterior
# predictive distribution for the submission to a journal,
# then the colored plot is not appropriate.
# So, by setting the argument Colour = FALSE, the scatter plot colored by black and white.
# we use the resulting plot for submission.
get_samples_from_Posterior_Predictive_distribution(fit,Colour = FALSE)
g <-get_samples_from_Posterior_Predictive_distribution(fit)
x <- g$CFP
y <- g$CTP
plot( hexbin::hexbin(unlist(x),unlist(y)) )
# Close the graphic device to avoid errors in R CMD check.
Close_all_graphic_devices()
# }
# NOT RUN {
# dottest
# }
Run the code above in your browser using DataLab