Learn R Programming

BayesianFROC (version 1.0.0)

plot_ROC_empirical_curves: Empirical ROC curve

Description

Empirical ROC curve

Usage

plot_ROC_empirical_curves(
  Number_of_cases = 100,
  Number_of_non_cases = 100,
  frequencies_of_non_cases = stats::rmultinom(1, size = Number_of_cases, prob = c(0.1,
    0.2, 0.3, 0.5)),
  frequencies_of_cases = stats::rmultinom(1, size = Number_of_non_cases, prob = c(0.4,
    0.3, 0.2, 0.1)),
  new.imaging.device = FALSE
)

Arguments

Number_of_cases

Number_of_cases

Number_of_non_cases

Number_of_non_cases

frequencies_of_non_cases

frequencies_of_non_cases

frequencies_of_cases

frequencies_of_cases

new.imaging.device

Logical: TRUE of FALSE. If TRUE (default), then open a new device to draw curve. Using this we can draw curves in same plain by new.imaging.device=FALSE.

Details

Suppose that there is a \(K\) categories and data are drawn from two multinomial distributions of size \(n,m\).

$$h_1,h_2,...,h_K, \Sigma h_i = n,$$

$$f_1,f_2,...,f_K,\Sigma f_i = m.$$

Then this plots the cumulative sums.