# \donttest{
# Age-specific mortality/incidence count time series:
# Age-specific mortality/incidence count time series:
data(age_specific_mortality_counts)
data(age_specific_infection_counts)
# Import the age distribution for Greece in 2020:
age_distr <- age_distribution(country = "Greece", year = 2020)
# Lookup table:
lookup_table <- data.frame(Initial = age_distr$AgeGrp,
Mapping = c(rep("0-39", 8),
rep("40-64", 5),
rep("65+" , 3)))
# Aggregate the age distribution table:
aggr_age <- aggregate_age_distribution(age_distr, lookup_table)
# Import the projected contact matrix for Greece:
conmat <- contact_matrix(country = "GRC")
# Aggregate the contact matrix:
aggr_cm <- aggregate_contact_matrix(conmat, lookup_table, aggr_age)
# Aggregate the IFR:
ifr_mapping <- c(rep("0-39", 8), rep("40-64", 5), rep("65+", 3))
aggr_age_ifr <- aggregate_ifr_react(age_distr, ifr_mapping, age_specific_infection_counts)
# Infection-to-death distribution:
ditd <- itd_distribution(ts_length = nrow(age_specific_mortality_counts),
gamma_mean = 24.19231,
gamma_cv = 0.3987261)
# Can assign priors to names:
N05 <- normal(0, 5)
Gamma22 <- gamma(2,2)
igbm_fit <- stan_igbm(y_data = age_specific_mortality_counts,
contact_matrix = aggr_cm,
age_distribution_population = aggr_age,
age_specific_ifr = aggr_age_ifr[[3]],
itd_distr = ditd,
likelihood_variance_type = "quadratic",
prior_volatility = N05,
prior_nb_dispersion = Gamma22,
algorithm_inference = "optimizing")
# }
Run the code above in your browser using DataLab