LDCA(X,y,nlambda=100,lambda=NULL,threshold=1e-07)
lambda
values - default is 100.1E-7
."LDCA","glmnet"
length(lambda)
"elnet"
and "lognet"
models, a nvars x
length(lambda)
matrix of coefficients, stored in sparse column
format ("CsparseMatrix"
). For "multnet"
, a list of nc
such
matrices, one for each class.lambda
values used"elnet"
, this
is the R-square). The deviance calculations incorporate weights if
present in the model. The deviance is defined to be 2*(loglike_sat -
loglike), where loglike_sat is the log-likelihood for the saturated
model (a model with a free parameter per observation). Hence dev.ratio=1-dev/nulldev.lambda
. For "multnet"
, this is the number of variables
with a nonzero coefficient for any class.summary.LDCA
,print.LDCA
,predict.LDCA
,plot.LDCA
library(glmnet)
x=matrix(rnorm(100*20),100,20)
y=rbinom(100,1,0.5)
fit=LDCA(x,y)
print(fit)
predict(fit,newx=x[1:10,]) # make predictions
Run the code above in your browser using DataLab