input matrix, of dimension nobs x nvars; each row is an
observation vector.
y
response variable.
lambda
user specified lambda sequence
nfolds
number of folds - default is 10.
Value
an object of class "cv.LDCA" is returned, which is a
list with the ingredients of the cross-validation fit.
lambda
the values of lambda used in the fits.
cvm
The mean cross-validated error - a vector of length
length(lambda).
cvsd
estimate of standard error of cvm.
cvup
upper curve = cvm+cvsd.
cvlo
lower curve = cvm-cvsd.
nzero
number of non-zero coefficients at each lambda.
name
a text string indicating type of measure (for plotting
purposes).
glmnet.fit
a fitted glmnet object for the full data.
lambda.min
value of lambda that gives minimum
cvm.
lambda.1se
largest value of lambda such that error is
within 1 standard error of the minimum.
References
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
Regularization Paths for Generalized Linear Models via Coordinate
Descent, http://www.stanford.edu/~hastie/Papers/glmnet.pdfJournal of Statistical Software, Vol. 33(1), 1-22 Feb 2010http://www.jstatsoft.org/v33/i01/
Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011)
Regularization Paths for Cox's Proportional Hazards Model via
Coordinate Descent, Journal of Statistical Software, Vol. 39(5)
1-13http://www.jstatsoft.org/v39/i05/