Learn R Programming

BinNonNor (version 1.5.3)

Biserial.Corr.BN: Computes the biserial correlation matrix for binary and continuous non-normal variables given the specified correlation matrix

Description

This function computes the biserial correlation matrix for binary-continuous non-normal combinations as formulated in Demirtas et al. (2012).

Usage

Biserial.Corr.BN(n.BB, n.NN, prop.vec, corr.vec = NULL, corr.mat = NULL, coef.mat)

Arguments

n.BB

Number of binary variables.

n.NN

Number of continuous non-normal variables.

prop.vec

Probability vector for binary variables.

corr.vec

Vector of elements below the diagonal of correlation matrix ordered columnwise.

corr.mat

Specified correlation matrix.

coef.mat

Matrix of coefficients produced from fleishman.coef.

Value

A matrix of size n.BB*n.NN.

References

Demirtas, H., Hedeker, D., and Mermelstein, R.J. (2012). Simulation of massive public health data by power polynomials. Statistics in Medicine, 31(27), 3337-3346.

See Also

fleishman.coef, Tetra.Corr.BB, Int.Corr.NN, overall.corr.mat

Examples

Run this code
# NOT RUN {
n.BB=2
n.NN=4
prop.vec=c(0.4,0.7)
corr.vec=NULL
corr.mat=matrix(c(1.0,-0.3,-0.3,-0.3,-0.3,-0.3,
-0.3,1.0,-0.3,-0.3,-0.3,-0.3,
-0.3,-0.3,1.0,0.4,0.5,0.6,
-0.3,-0.3,0.4,1.0,0.7,0.8,
-0.3,-0.3,0.5,0.7,1.0,0.9,
-0.3,-0.3,0.6,0.8,0.9,1.0),6,byrow=TRUE)

coef.mat=matrix(c(
 -0.31375,  0.00000,  0.10045, -0.10448,
  0.82632,  1.08574,  1.10502,  0.98085,
  0.31375,  0.00000, -0.10045,  0.10448,
  0.02271, -0.02945, -0.04001,  0.00272),4,byrow=TRUE)

bicor.mat=Biserial.Corr.BN(n.BB,n.NN,prop.vec,corr.vec=NULL,corr.mat,coef.mat)

n.BB=1
n.NN=1
prop.vec=0.6
corr.vec=NULL
corr.mat=matrix(c(1,-0.3,-0.3,1),2,2)
coef.mat=matrix(c(-0.31375,0.82632,0.31375,0.02271),4,1)
bicor.mat=Biserial.Corr.BN(n.BB,n.NN,prop.vec,corr.vec=NULL,corr.mat,coef.mat)
# }

Run the code above in your browser using DataLab