Learn R Programming

BinaryEPPM (version 3.0)

predict.BinaryEPPM: Prediction Method for BinaryEPPM Objects

Description

Extract various types of predictions from BinaryEPPM regression models.

Usage

# S3 method for BinaryEPPM
predict(object, newdata = NULL, type = c("response", 
     "linear.predictor.p", "linear.predictor.scale.factor",
 "p", "scale.factor", "scale.factor.limits", "mean", 
 "variance",   "distribution", "distribution.parameters"), na.action = na.pass, ...)

Value

A vector or list of the predicted values from the fitted model object.

Arguments

object

fitted model object of class "BinaryEPPM".

newdata

optionally, a data frame in which to look for variables with which to predict. If omitted, the original observations are used.

type

character indicating type of predictions: fitted means of responses ("response"), linear predictors ("linear.predictor.p", "linear.predictor.scale.factor"), fitted value of probability of success ("p"), fitted value of scale-factor ("scale.factor"), fitted value of mean ("mean"), scale factor limits ("scale.factor.limits"), fitted value of variance ("variance"), fitted probability distribution ("distribution"), parameters of fitted distributions ("distribution.parameters")

na.action

function determining what should be done with missing values in newdata. The default is to predict NA.

...

some methods for this generic function require additional arguments.

Author

David M. Smith <dmccsmith@verizon.net>

References

Cribari-Neto F, Zeileis A. (2010). Beta Regression in R. Journal of Statistical Software, 34(2), 1-24. tools:::Rd_expr_doi("10.18637/jss.v034.i02").

See Also

predict.betareg

Examples

Run this code
data("ropespores.case")
output.fn <- BinaryEPPM(data = ropespores.case,
                  number.spores / number.tested ~ 1 + offset(logdilution),
                  model.type = 'p only', model.name = 'binomial')                 
predict(output.fn, type = "response")
predict(output.fn, type = "linear.predictor.p")

Run the code above in your browser using DataLab