CAESAR.coembedding: Compute Co-embedding Using CAESAR
Description
This function performs co-embedding of both cells and genes using the CAESAR method. It integrates spatial transcriptomics data from a Seurat object (`seu`) with a spatial adjacency matrix to compute the low-dimensional co-embedding.
The modified Seurat object with the computed cell and gene embeddings stored in the specified reduction slot.
Arguments
seu
A Seurat object containing spatial transcriptomics data.
pos
A matrix of spatial coordinates for the spots (e.g., spatial positions of cells or pixels in the image). The row names of `pos` should match the column names of `seu`.
reduction.name
A character string specifying the name of the dimensional reduction method to store in the Seurat object. Default is "caesar".
q
An integer specifying the number of dimensions for the reduced co-embeddings. Default is 50.
radius.upper
A numeric value specifying the upper limit of the search radius for the spatial adjacency matrix. Default is 400.
...
Additional arguments passed to `cellembedding_image_seurat`.
See Also
cellembedding_seurat for computing cell embeddings.
add.gene.embedding for adding gene embeddings to a Seurat object.