Learn R Programming

CDM (version 8.2-6)

IRT.data: S3 Method for Extracting Used Item Response Dataset

Description

This S3 method extracts the used dataset with item responses.

Usage

IRT.data(object, ...)

# S3 method for din IRT.data(object, ...)

# S3 method for gdina IRT.data(object, ...)

# S3 method for gdm IRT.data(object, ...)

# S3 method for mcdina IRT.data(object, ...)

# S3 method for reglca IRT.data(object, ...)

# S3 method for slca IRT.data(object, ...)

Value

A matrix (or data frame) with item responses and group identifier and weights vector as attributes.

Arguments

object

Object of classes din, gdina, mcdina, gdm, slca, reglca.

...

More arguments to be passed.

Examples

Run this code
if (FALSE) {
#############################################################################
# EXAMPLE 1: Several models for sim.dina data
#############################################################################

data(sim.dina, package="CDM")
data(sim.qmatrix, package="CDM")

dat <- sim.dina
q.matrix <- sim.qmatrix

#--- Model 1: GDINA model
mod1 <- CDM::gdina( data=dat, q.matrix=q.matrix)
summary(mod1)
dmod1 <- CDM::IRT.data(mod1)
str(dmod1)

#--- Model 2: DINA model
mod2 <- CDM::din( data=dat, q.matrix=q.matrix)
summary(mod2)
dmod2 <- CDM::IRT.data(mod2)

#--- Model 3: Rasch model with gdm function
mod3 <- CDM::gdm( data=dat, irtmodel="1PL", theta.k=seq(-4,4,length=11),
                centered.latent=TRUE )
summary(mod3)
dmod3 <- CDM::IRT.data(mod3)

#--- Model 4: Latent class model with two classes

dat <- sim.dina
I <- ncol(dat)

# define design matrices
TP <- 2     # two classes
# The idea is that latent classes refer to two different "dimensions".
# Items load on latent class indicators 1 and 2, see below.
Xdes <- array(0, dim=c(I,2,2,2*I) )
items <- colnames(dat)
dimnames(Xdes)[[4]] <- c(paste0( colnames(dat), "Class", 1),
          paste0( colnames(dat), "Class", 2) )
    # items, categories, classes, parameters
# probabilities for correct solution
for (ii in 1:I){
    Xdes[ ii, 2, 1, ii ] <- 1    # probabilities class 1
    Xdes[ ii, 2, 2, ii+I ] <- 1  # probabilities class 2
}
# estimate model
mod4 <- CDM::slca( dat, Xdes=Xdes)
summary(mod4)
dmod4 <- CDM::IRT.data(mod4)
}

Run the code above in your browser using DataLab