Learn R Programming

CDM (version 8.2-6)

IRT.expectedCounts: S3 Method for Extracting Expected Counts

Description

This S3 method extracts expected counts from model output.

Usage

IRT.expectedCounts(object, ...)

# S3 method for din IRT.expectedCounts(object, ...)

# S3 method for gdina IRT.expectedCounts(object, ...)

# S3 method for gdm IRT.expectedCounts(object, ...)

# S3 method for mcdina IRT.expectedCounts(object, ...)

# S3 method for slca IRT.expectedCounts(object, ...)

# S3 method for reglca IRT.expectedCounts(object, ...)

Value

An array with expected counts. The dimensions are items, categories, latent classes and groups.

Arguments

object

Object of classes din, gdina, mcdina, gdm or slca.

...

More arguments to be passed.

Examples

Run this code
if (FALSE) {
#############################################################################
# EXAMPLE 1: Expected counts gdm function
#############################################################################

data(data.fraction1, package="CDM")
dat <- data.fraction1$data
theta.k <- seq( -6, 6, len=11 )   # discretized ability

#--- Model 1: Rasch model
mod1 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, skillspace="normal",
               centered.latent=TRUE )
emod1 <- CDM::IRT.expectedCounts(mod1)
str(emod1)

#############################################################################
# EXAMPLE 2: Expected counts gdina function
#############################################################################

data(sim.dina, package="CDM")
data(sim.qmatrix, package="CDM")

#--- Model 1: estimation of the GDINA model
mod1 <- CDM::gdina( data=sim.dina, q.matrix=sim.qmatrix)
summary(mod1)
emod1 <- CDM::IRT.expectedCounts(mod1)
str(emod1)

#--- Model 2: GDINA model with two groups
mod2 <- CDM::gdina( data=CDM::sim.dina, q.matrix=CDM::sim.qmatrix,
                   group=rep(1:2, each=200) )
summary(mod2)
emod2 <- CDM::IRT.expectedCounts( mod2 )
str(emod2)
}

Run the code above in your browser using DataLab