This function implements a structured latent class model for polytomous item responses (Formann, 1985, 1992). Lasso estimation for the item parameters is included (Chen, Liu, Xu & Ying, 2015; Chen, Li, Liu & Ying, 2017; Sun, Chen, Liu, Ying & Xin, 2016).
slca(data, group=NULL, weights=rep(1, nrow(data)), Xdes,
Xlambda.init=NULL, Xlambda.fixed=NULL, Xlambda.constr.V=NULL,
Xlambda.constr.c=NULL, delta.designmatrix=NULL,
delta.init=NULL, delta.fixed=NULL, delta.linkfct="log",
Xlambda_positive=NULL, regular_type="lasso", regular_lam=0, regular_w=NULL,
regular_n=nrow(data), maxiter=1000, conv=1e-5, globconv=1e-5, msteps=10,
convM=5e-04, decrease.increments=FALSE, oldfac=0, dampening_factor=1.01,
seed=NULL, progress=TRUE, PEM=TRUE, PEM_itermax=maxiter, ...)# S3 method for slca
summary(object, file=NULL, ...)
# S3 method for slca
print(x, ...)
# S3 method for slca
plot(x, group=1, ... )
An object of class slca
. The list contains the
following entries:
Data frame with conditional item probabilities
Deviance
Information criteria, number of estimated parameters
Estimated \(\lambda_x\) parameters
Standard error of \(\lambda_x\) parameters
Trait distribution
Item response probabilities evaluated for all classes
An array of expected counts \(n_{cikg}\) of ability class \(c\) at item \(i\) at category \(k\) in group \(g\)
Number of groups
Number of items
Number of persons
Parameter estimates for skillspace representation
Covariance matrix of parameter estimates for skillspace representation
Classified skills for each student (MLE)
Classified skills for each student (MAP)
Original data frame
Group statistics (sample sizes, group labels)
Individual likelihood
Individual posterior distribution
Maximal category per item
Info about computation time
Used skillspace parametrization
Number of iterations
Used simulation seed
Used initial lambda parameters
Used initial delta parameters
Logical indicating whether convergence was achieved.
Matrix of polytomous item responses
Optional vector of group identifiers. For plot.slca
it is
a single integer group identified.
Optional vector of sample weights
Design matrix for \(x_{ijh}\) with \( q_{ihjv}\) entries. Therefore, it must be an array with four dimensions referring to items (\(i\)), categories (\(h\)), latent classes (\(j\)) and \(\lambda\) parameters (\(v\)).
Initial \(\lambda_x\) parameters
Fixed \(\lambda_x\) parameters. These must be provided by a matrix with two columns: 1st column -- Parameter index, 2nd column: Fixed value.
A design matrix for linear restrictions of the form \(V_x \lambda_x=c_x\) for the \(\lambda_x\) parameter.
A vector for the linear restriction \(V_x \lambda_x=c_x\) of the \(\lambda_x\) parameter.
Design matrix for delta parameters \(\delta\) parameterizing the latent class distribution by log-linear smoothing (Xu & von Davier, 2008)
Initial \(\delta\) parameters
Fixed \(\delta\) parameters. This must be a matrix with three columns: 1st column: Parameter index, 2nd column: Group index, 3rd column: Fixed value
Link function for skill space reduction.
This can be the log-linear link (log
) or the
logistic link function (logit
).
Optional vector of logical indicating which elements of \(\bold{\lambda}_x\) should be constrained to be positive.
Regularization method which can be lasso
,
scad
or mcp
. See gdina
for more
information and references.
Numeric. Regularization parameter
Vector for weighting the regularization penalty
Vector of regularization factor. This will be typically the sample size.
Maximum number of iterations
Convergence criterion for item parameters and distribution parameters
Global deviance convergence criterion
Maximum number of M steps in estimating \(b\) and \(a\) item parameters. The default is to use 4 M steps.
Convergence criterion in M step
Should in the M step the increments
of \(a\) and \(b\) parameters decrease during iterations?
The default is FALSE
. If there is an increase in deviance
during estimation, setting decrease.increments
to TRUE
is recommended.
Factor \(f\) between 0 and 1 to control convergence behavior.
If \(x_t\) denotes the estimated parameter in iteration \(t\),
then the regularized estimate \(x_t^{\ast}\) is obtained by
\(x_t^{\ast}=f x_{t-1} + (1-f) x_t\). Therefore, values of
oldfac
near to one only allow for small changes in estimated
parameters from in succeeding iterations.
Factor larger than one defining the specified decrease in decrements in iterations.
Simulation seed for initial parameters. The default
of NULL
corresponds to a random seed.
An optional logical indicating whether the function should print the progress of iteration in the estimation process.
Logical indicating whether the P-EM acceleration should be applied (Berlinet & Roland, 2012).
Number of iterations in which the P-EM method should be applied.
A required object of class slca
Optional file name for a file in which summary
should be sinked.
A required object of class slca
Optional parameters to be passed to or from other methods will be ignored.
The structured latent class model allows for general constraints of items \(i\) in categories \(h\) and classes \(j\). The item response model is $$P( X_{i}=h | j )=\frac{ \exp( x_{ihj} ) }{ \sum_l \exp( x_{ilj} ) }$$ with linear constraints on the class specific probabilities $$ x_{ihj}=\sum_v q_{ihjv} \lambda_{xv} $$
Linear restrictions on the \(\lambda_x\) parameter can be specified by
a matrix equation \(V_x \lambda_x=c_x\) (see Xlambda.constr.V
and
Xlambda.constr.c
; Neuhaus, 1996).
The latent class distribution can be smoothed by a log-linear
link function (Xu & von Davier, 2008) or a logistic link function
(Formann, 1992). For class \(j\)
in group \(g\) employing a link function \(h\), it holds that
$$ h [ P( j| g) ] \propto \sum_w r_{jw} \delta_{gw} $$
where group-specific distributions are allowed. The values
\(r_{jw}\) are specified in the design matrix delta.designmatrix
.
This model contains classical uni- and multidimensional latent trait models, latent class analysis, located latent class analysis, cognitive diagnostic models, the general diagnostic model and mixture item response models as special cases (see Formann & Kohlmann, 1998; Formann, 2007).
The function also allows for regularization of \(\lambda_{xv}\) parameters
using the lasso approach (Sun et al., 2016).
More formally, the penalty function can be written as
$$pen( \bold{\lambda}_x )=p_\lambda \sum_v n_v w_v | \lambda_{xv} | $$
where \(p_\lambda\) can be specified with regular_lam
,
\(w_v\) can be specified with regular_w
, and
\(n_v\) can be specified with regular_n
.
Berlinet, A. F., & Roland, C. (2012). Acceleration of the EM algorithm: P-EM versus epsilon algorithm. Computational Statistics & Data Analysis, 56(12), 4122-4137.
Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110, 850-866.
Chen, Y., Li, X., Liu, J., & Ying, Z. (2017). Regularized latent class analysis with application in cognitive diagnosis. Psychometrika, 82, 660-692.
Formann, A. K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87-111.
Formann, A. K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87, 476-486.
Formann, A. K. (2007). (Almost) Equivalence between conditional and mixture maximum likelihood estimates for some models of the Rasch type. In M. von Davier & C. H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models (pp. 177-189). New York: Springer.
Formann, A. K., & Kohlmann, T. (1998). Structural latent class models. Sociological Methods & Research, 26, 530-565.
Neuhaus, W. (1996). Optimal estimation under linear constraints. Astin Bulletin, 26, 233-245.
Sun, J., Chen, Y., Liu, J., Ying, Z., & Xin, T. (2016). Latent variable selection for multidimensional item response theory models via \(L_1\) regularization. Psychometrika, 81(4), 921-939.
Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model to NAEP data. ETS Research Report ETS RR-08-27. Princeton, ETS.
For latent trait models with continuous latent variables see the mirt or TAM packages. For a discrete trait distribution see the MultiLCIRT package.
For latent class models see the poLCA, covLCA or randomLCA package.
For mixture Rasch or mixture IRT models see the psychomix or mRm package.