# NOT RUN {
#############################################################################
# EXAMPLE 1: DINO data example
#############################################################################
data(sim.dino, package="CDM")
data(sim.qmatrix, package="CDM")
#***
# Model 1: estimate DINO model with din
mod1 <- CDM::din( sim.dino, q.matrix=sim.qmatrix, rule="DINO")
# estimate classification reliability
cdm.est.class.accuracy( mod1, n.sims=5000)
#***
# Model 2: estimate DINO model with gdina
mod2 <- CDM::gdina( sim.dino, q.matrix=sim.qmatrix, rule="DINO")
# estimate classification reliability
cdm.est.class.accuracy( mod2 )
m1 <- mod1$coef[, c("guess", "slip" ) ]
m2 <- mod2$coef
m2 <- cbind( m1, m2[ seq(1,18,2), "est" ],
1 - m2[ seq(1,18,2), "est" ] - m2[ seq(2,18,2), "est" ] )
colnames(m2) <- c("g.M1", "s.M1", "g.M2", "s.M2" )
## > round( m2, 3 )
## g.M1 s.M1 g.M2 s.M2
## Item1 0.109 0.192 0.109 0.191
## Item2 0.073 0.234 0.072 0.234
## Item3 0.139 0.238 0.146 0.238
## Item4 0.124 0.065 0.124 0.009
## Item5 0.125 0.035 0.125 0.037
## Item6 0.214 0.523 0.214 0.529
## Item7 0.193 0.514 0.192 0.514
## Item8 0.246 0.100 0.246 0.100
## Item9 0.201 0.032 0.195 0.032
# Note that s (the slipping parameter) substantially differs for Item4
# for DINO estimation in 'din' and 'gdina'
# }
Run the code above in your browser using DataLab