# NOT RUN {
#############################################################################
# EXAMPLE 1: Model comparisons data.dtmr
#############################################################################
data(data.dtmr, package="CDM")
data <- data.dtmr$data
q.matrix <- data.dtmr$q.matrix
I <- ncol(data)
#*** Model 1: LCDM
# define item wise rules
rule <- rep( "ACDM", I )
names(rule) <- colnames(data)
rule[ c("M14","M17") ] <- "GDINA2"
# estimate model
mod1 <- CDM::gdina( data, q.matrix, linkfct="logit", rule=rule)
summary(mod1)
#*** Model 2: DINA model
mod2 <- CDM::gdina( data, q.matrix, rule="DINA" )
summary(mod2)
#*** Model 3: RRUM model
mod3 <- CDM::gdina( data, q.matrix, rule="RRUM" )
summary(mod3)
#--- model comparisons
# LCDM vs. DINA
anova(mod1,mod2)
## Model loglike Deviance Npars AIC BIC Chisq df p
## 2 Model 2 -76570.89 153141.8 69 153279.8 153729.5 1726.645 10 0
## 1 Model 1 -75707.57 151415.1 79 151573.1 152088.0 NA NA NA
# LCDM vs. RRUM
anova(mod1,mod3)
## Model loglike Deviance Npars AIC BIC Chisq df p
## 2 Model 2 -75746.13 151492.3 77 151646.3 152148.1 77.10994 2 0
## 1 Model 1 -75707.57 151415.1 79 151573.1 152088.0 NA NA NA
#--- model fit
summary( CDM::modelfit.cor.din( mod1 ) )
## Test of Global Model Fit
## type value p
## 1 max(X2) 7.74382 1.00000
## 2 abs(fcor) 0.04056 0.72707
##
## Fit Statistics
## est
## MADcor 0.00959
## SRMSR 0.01217
## MX2 0.75696
## 100*MADRESIDCOV 0.20283
## MADQ3 0.02220
#############################################################################
# EXAMPLE 2: Simulating data of structure data.dtmr
#############################################################################
data(data.dtmr, package="CDM")
# draw sample of N=200
set.seed(87)
data.dtmr$sim_data(N=200, skill.distribution=data.dtmr$skill.distribution,
itempars=data.dtmr$itempars)
# }
Run the code above in your browser using DataLab