# NOT RUN {
#############################################################################
## EXAMPLE 1: simulate DINA/DINO data according to a tetrachoric correlation
#############################################################################
# define Q-matrix for 4 items and 2 attributes
q.matrix <- matrix(c(1,0,0,1,1,1,1,1), ncol=2, nrow=4)
# Slipping parameters
slip <- c(0.2,0.3,0.4,0.3)
# Guessing parameters
guess <- c(0,0.1,0.05,0.2)
set.seed(1567) # fix random numbers
dat1 <- CDM::sim.din(N=200, q.matrix, slip=slip, guess=guess,
# Possession of the attributes with high probability
mean=c(0.5,0.2),
# Possession of the attributes is weakly correlated
Sigma=matrix(c(1,0.2,0.2,1), ncol=2), rule="DINA")$dat
head(dat1)
set.seed(15367) # fix random numbers
res <- CDM::sim.din(N=200, q.matrix, slip=slip, guess=guess, mean=c(0.5,0.2),
Sigma=matrix(c(1,0.2,0.2,1), ncol=2), rule="DINO")
# extract simulated data
dat2 <- res$dat
# extract attribute patterns
head( res$alpha )
## [,1] [,2]
## [1,] 1 1
## [2,] 1 1
## [3,] 1 1
## [4,] 1 1
## [5,] 1 1
## [6,] 1 0
# simulate data based on given attributes
# -> 5 persons with 2 attributes -> see the Q-matrix above
alpha <- matrix( c(1,0,1,0,1,1,0,1,1,1),
nrow=5,ncol=2, byrow=TRUE )
CDM::sim.din( q.matrix=q.matrix, alpha=alpha )
# }
# NOT RUN {
#############################################################################
# EXAMPLE 2: Simulation based on attribute vectors
#############################################################################
set.seed(76)
# define Q-matrix
Qmatrix <- matrix(c(1,0,1,0,1,0,0,1,0,1,0,1,1,1,1,1), 8, 2, byrow=TRUE)
colnames(Qmatrix) <- c("Attr1","Attr2")
# define skill patterns
alpha.patt <- matrix(c(0,0,1,0,0,1,1,1), 4,2,byrow=TRUE )
AP <- nrow(alpha.patt)
# define pattern probabilities
alpha.prob <- c( .20, .40, .10, .30 )
# simulate alpha latent responses
N <- 1000 # number of persons
ind <- sample( x=1:AP, size=N, replace=TRUE, prob=alpha.prob)
alpha <- alpha.patt[ ind, ] # (true) latent responses
# define guessing and slipping parameters
guess <- c(.26,.3,.07,.23,.24,.34,.05,.1)
slip <- c(.05,.16,.19,.03,.03,.19,.15,.05)
# simulation of the DINA model
dat <- CDM::sim.din(N=0, q.matrix=Qmatrix, guess=guess,
slip=slip, alpha=alpha)$dat
# estimate model
res <- CDM::din( dat, q.matrix=Qmatrix )
# extract maximum likelihood estimates for individual classifications
est <- paste( res$pattern$mle.est )
# calculate classification accuracy
mean( est==apply( alpha, 1, FUN=function(ll){ paste0(ll[1],ll[2] ) } ) )
## [1] 0.935
#############################################################################
# EXAMPLE 3: Simulation based on already estimated DINA model for data.ecpe
#############################################################################
dat <- CDM::data.ecpe$data
q.matrix <- CDM::data.ecpe$q.matrix
#***
# (1) estimate DINA model
mod <- CDM::din( data=dat[,-1], q.matrix=q.matrix, rule="DINA")
#***
# (2) simulate data according to DINA model
set.seed(977)
# number of subjects to be simulated
n <- 3000
# simulate attribute patterns
probs <- mod$attribute.patt$class.prob # probabilities
patt <- mod$attribute.patt.splitted # response patterns
alpha <- patt[ sample( 1:(length(probs) ), n, prob=probs, replace=TRUE), ]
# simulate data using estimated item parameters
res <- CDM::sim.din(N=n, q.matrix=q.matrix, guess=mod$guess$est, slip=mod$slip$est,
rule="DINA", alpha=alpha)
# extract data
dat <- res$dat
# }
Run the code above in your browser using DataLab