Learn R Programming

CDVine (version 1.4)

BiCopPar2Tau: Kendall's tau value of a bivariate copula

Description

This function computes the theoretical Kendall's tau value of a bivariate copula for given parameter values.

Usage

BiCopPar2Tau(family, par, par2=0)

Arguments

family
An integer defining the bivariate copula family: 0 = independence copula 1 = Gaussian copula 2 = Student t copula (t-copula) 3 = Clayton copula 4 = Gumbel copula 5 = Frank copula 6 = Joe copula 7 = BB1 copula 8 = BB6 copula 9 = BB7 copula 10 = BB8 copula 13 = rotated Clayton copula (180 degrees; ``survival Clayton'') 14 = rotated Gumbel copula (180 degrees; ``survival Gumbel'') 16 = rotated Joe copula (180 degrees; ``survival Joe'') 17 = rotated BB1 copula (180 degrees; ``survival BB1'') 18 = rotated BB6 copula (180 degrees; ``survival BB6'') 19 = rotated BB7 copula (180 degrees; ``survival BB7'') 20 = rotated BB8 copula (180 degrees; ``survival BB8'') 23 = rotated Clayton copula (90 degrees) 24 = rotated Gumbel copula (90 degrees) 26 = rotated Joe copula (90 degrees) 27 = rotated BB1 copula (90 degrees) 28 = rotated BB6 copula (90 degrees) 29 = rotated BB7 copula (90 degrees) 30 = rotated BB8 copula (90 degrees) 33 = rotated Clayton copula (270 degrees) 34 = rotated Gumbel copula (270 degrees) 36 = rotated Joe copula (270 degrees) 37 = rotated BB1 copula (270 degrees) 38 = rotated BB6 copula (270 degrees) 39 = rotated BB7 copula (270 degrees) 40 = rotated BB8 copula (270 degrees)
par
Copula parameter.
par2
Second parameter for the two parameter BB1, BB6, BB7 and BB8 copulas (default: par2 = 0). Note that the degrees of freedom parameter of the t-copula does not need to be set, because the theoretical Kendall's tau value of the t-copula is independent of this choice.

Value

Theoretical value of Kendall's tau corresponding to the bivariate copula family and parameter(s) ($\theta$ for one parameter families and the first parameter of the t-copula, $\theta$ and $\delta$ for the two parameter BB1, BB6, BB7 and BB8 copulas).
No.
Kendall's tau
1, 2
$2 / \pi arcsin(\theta)$
3, 13
$\theta / (\theta+2)$
4, 14
$1-1/\theta$
5
$1-4/\theta + 4 D_1(\theta)/\theta$
with $D_1(\theta)=\int_0^\theta (x/\theta)/(exp(x)-1)dx$ (Debye function)
6, 16
$1+4/\theta^2\int_0^1 x\log(x)(1-x)^{2(1-\theta)/\theta}dx$
7, 17
$1-2/(\delta(\theta+2))$
8, 18
$1+4\int_0^1 -\log(-(1-t)^\theta+1)(1-t-(1-t)^{-\theta}+(1-t)^{-\theta}t)/(\delta\theta) dt$
9, 19
$1+4\int_0^1 ( (1-(1-t)^{\theta})^{-\delta} - )/( -\theta\delta(1-t)^{\theta-1}(1-(1-t)^{\theta})^{-\delta-1} ) dt$
10, 20
$1+4\int_0^1 -\log \left( ((1-t\delta)^\theta-1)/((1-\delta)^\theta-1) \right) $
$* (1-t\delta-(1-t\delta)^{-\theta}+(1-t\delta)^{-\theta}t\delta)/(\theta\delta) dt$
23, 33
$\theta/(2-\theta)$
24, 34
$-1-1/\theta$
26, 36
$-1-4/\theta^2\int_0^1 x\log(x)(1-x)^{-2(1+\theta)/\theta}dx$
27, 37
$1-2/(\delta(\theta+2))$
28, 38
$-1-4\int_0^1 -\log(-(1-t)^{-\theta}+1)(1-t-(1-t)^{\theta}+(1-t)^{\theta}t)/(\delta\theta) dt$
29, 39
$-1-4\int_0^1 ( (1-(1-t)^{-\theta})^{\delta} - )/( -\theta\delta(1-t)^{-\theta-1}(1-(1-t)^{-\theta})^{\delta-1} ) dt$
30, 40
$-1-4\int_0^1 -\log \left( ((1+t\delta)^{-\theta}-1)/((1+\delta)^{-\theta}-1) \right)$
$* (1+t\delta-(1+t\delta)^{\theta}-(1+t\delta)^{\theta}t\delta)/(\theta\delta) dt$

References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229-255.

See Also

CDVinePar2Tau, BiCopTau2Par

Examples

Run this code
## Example 1: Gaussian copula
tt1 = BiCopPar2Tau(1,0.7)

# transform back
BiCopTau2Par(1,tt1)


## Example 2: Clayton copula
BiCopPar2Tau(3,1.3)

Run the code above in your browser using DataLab