Parameter corresponding to the bivariate copula family and the value of Kendall's tau ($\tau$).
No.
Parameter
1, 2
$sin(\tau \pi/2)$
3, 13
$max(0,2\tau/(1-\tau))$
4, 14
$max(1,1/(1-\tau))$
5
no closed form expression (numerical inversion)
6, 16
no closed form expression (numerical inversion)
23, 33
$max(0,2\tau/(1+\tau))$
24, 34
$min(-1,-1/(1+\tau))$
References
Joe, H. (1997).
Multivariate Models and Dependence Concepts.
Chapman and Hall, London.
Czado, C., U. Schepsmeier, and A. Min (2012).
Maximum likelihood estimation of mixed C-vines with application to exchange rates.
Statistical Modelling, 12(3), 229-255.