# \donttest{
# Define group sizes
set.seed(123)
M <- 5 # Number of sub-groups
nvec <- round(runif(M, 100, 200)) # Number of nodes per sub-group
n <- sum(nvec) # Total number of nodes
# Define parameters
lambda <- 0.4
Gamma <- c(2, -1.9, 0.8, 1.5, -1.2)
sigma <- 1.5
theta <- c(lambda, Gamma, sigma)
# Generate covariates (X)
X <- cbind(rnorm(n, 1, 1), rexp(n, 0.4))
# Construct network adjacency matrices
G <- list()
for (m in 1:M) {
nm <- nvec[m] # Nodes in sub-group m
Gm <- matrix(0, nm, nm) # Initialize adjacency matrix
max_d <- 30 # Maximum degree
for (i in 1:nm) {
tmp <- sample((1:nm)[-i], sample(0:max_d, 1)) # Random connections
Gm[i, tmp] <- 1
}
rs <- rowSums(Gm) # Normalize rows
rs[rs == 0] <- 1
Gm <- Gm / rs
G[[m]] <- Gm
}
# Prepare data
data <- data.frame(X, peer.avg(G, cbind(x1 = X[, 1], x2 = X[, 2])))
colnames(data) <- c("x1", "x2", "gx1", "gx2") # Add column names
# Complete information game simulation
ytmp <- simsart(formula = ~ x1 + x2 + gx1 + gx2,
Glist = G, theta = theta,
data = data, cinfo = TRUE)
data$yc <- ytmp$y # Add simulated outcome to the dataset
# Incomplete information game simulation
ytmp <- simsart(formula = ~ x1 + x2 + gx1 + gx2,
Glist = G, theta = theta,
data = data, cinfo = FALSE)
data$yi <- ytmp$y # Add simulated outcome to the dataset
# }
Run the code above in your browser using DataLab