Learn R Programming

CHAT (version 1.1)

getPara: Initialize parameters for AGP estimation

Description

This function sets default values to parameters required to run AGP estimation.

Usage

getPara()

Arguments

Value

The default parameters obtained from this function is essential to run getAGP(). These parameters include:
datafile
full path to input data file generated by getSeg() or in the same format
savefile
name of the output plain text file to be saved
pngdir
directory to save BAF-LRR plots, ignored if is.png is FALSE
BAFfilter
DNA segments with BAF markers below this value are removed to reduce noise. Default 10
thr.kmeans
convergence threshold for getKmeans(). Default 0.1
thr.originsize
minimum number of markers included in the origin cluster, used by getOrigin(). Default 500
thr.CL
threshold distance to call a data point to be close to a canonical line, used by getSumDist(). Default 0.05
thr.CP
threshold distance to call a data point to be close to a canonical point, used by getSumDist(). Default 0.05
thr.penalty
penalty (in units of number of markers) to increase ploidy. Default 500
std.BAF
standard deviation of BAF markers. Default 0.02
std.LRR
standard deviation of LRR markers. Default 0.08
exclude.chr
chromosomes to be excluded from the analysis. Default NULL
res.r
resampling ratio for bootstrap. Default 0.8
num.tracks
number of canonical tracks to be considered in likelihood estimation. Default 4
is.normalize
if data needs to be normalized first. Default TRUE
is.perm
if bootstrap based null distribution of AGP is estimated, time consuming. Default FALSE
is.png
if BAF-LRR plots are saved. Default TRUE
is.plot
if BAF-LRR plots are shown during the process of AGP estimation. Default TRUE
LRR_correction_del
factor to correct negative LRR values. Default 0.572
LRR_correction_amp
factor to correct positive LRR values. Default 0.553

Examples

Run this code
para=getPara()
## Change threshold for ploidy increase
para$thr.penalty=200
## Skip png plotting
para$is.png=FALSE

Run the code above in your browser using DataLab