Learn R Programming

CHAT (version 1.1)

getSampleAGP: AGP inference by sample

Description

This function performs AGP inference based on canonical positions on BAF-LRR plot for one sample.

Usage

getSampleAGP(sam.dat, oo, para)

Arguments

sam.dat
numeric matrix, as returned from getSeg() or getSegChr()
oo
Origin Cluster, as returned from getOrigin()
para
list, parameters returned from getPara()

Value

A list inherited from the output of getSumDist() with additional elements:
percent.on.track
For quality control, percent of genome close to at least one regression line.
percent.on.point
For quality control, percent of genome close to at least one canonical point.
percent.change
For quanlity control, percent of genome with CNA.
sam.p
estimated AGP of the sample
type
estimated ploidy type of the sample
If is.perm is set TRUE in para, additional elements are included:
conf.int
95 percent confident interval of estimated AGP
std
standard deviation of estimated AGP

Details

AGP values and possible ploidy types of the input sample are screened for best combination which minimizes the total summation of distances from observed data points to the grid of theoretical canonical positions.

Examples

Run this code

data(A0SD.BAF)
data(A0SD.LRR)
seg.dat=c()
for(CHR in c(8,9,10)){
	baf=A0SD.BAF[A0SD.BAF[,2]==CHR,]
	lrr=A0SD.LRR[A0SD.LRR[,2]==CHR,]
	x=getSegChr(baf,lrr)
	seg.dat=rbind(seg.dat,x)
}
dd.dat=seg.dat[,2:8]
rownames(dd.dat)=seg.dat[,1]
mode(dd.dat)='numeric'
para=getPara()
oo=getOrigin(dd.dat,para=para)
getSampleAGP(dd.dat,oo,para=para)

Run the code above in your browser using DataLab