Learn R Programming

CHAT (version 1.1)

getSampleCCF: CCF estimation by sample.

Description

Finds the Cancer Cell Fraction values of each somatic mutations in one sample.

Usage

getSampleCCF(id, dd, VCFdir, thr.coverage = 10, upper.cov=0.99, nc = 10, tc = 11, AD = 3, filter = TRUE, TCGA=TRUE)

Arguments

id
sample identifier. Must be appearing in the VCF file name.
dd
numeric matrix, as returned from getSegPurity() or getsAGP()
VCFdir
directory where the VCF file for the input sample is saved.
thr.coverage
variants with coverage below this threshold will be removed.
upper.cov
sites with coverage above this percentile will be removed.
nc
the column index in VCF file which coverage information for normal control sample is placed.
tc
the column index in VCF file which coverage information for tumor sample is placed.
AD
the index of Allele Depth field placed in a ';' deliminated string of sample coverage information.
filter
logical. If TRUE, the 'FILTER' column in the VCF file is pre-processed and for variants passed QC, this field is set 'PASS'.
TCGA
If you are working with The Cancer Genome Atlas datasets, set this to be TRUE. The sample identifier is assumed to be in format described in https://wiki.nci.nih.gov/display/TCGA/TCGA+Barcode

Value

a matrix in the format of VCF file for all somatic mutations with updated 'INFO' field. The additional information include: sample ID, coverage of reference allele in tumor, coverage of alternative allele in tumor, coverage of reference allele in control, coverage of alternative allele in control, CCF estimation, standard deviation of CCF, sAGP, nb, nt and lineage scenario.

Examples

Run this code
## Not run: 
# ## This is not executable. User must create their own VCF directory.
# id='TCGA.A1.A0SD'
# VCFdir='VCF/'
# ## Slow. Run with caution.
# data(A0SD.BAF)
# data(A0SD.LRR)
# ## DNA segmentation
# seg.dat=c()
# for(CHR in c(8,9,10)){
# 	baf=A0SD.BAF[A0SD.BAF[,2]==CHR,]
# 	lrr=A0SD.LRR[A0SD.LRR[,2]==CHR,]
# 	x=getSegChr(baf,lrr)
# 	seg.dat=rbind(seg.dat,x)
# }
# dd.dat=seg.dat[,2:8]
# rownames(dd.dat)=seg.dat[,1]
# mode(dd.dat)='numeric'
# save(dd.dat,file='A0SDseg.Rdata')
# para=getPara()
# para$datafile='A0SDseg.Rdata'
# para$savefile='A0SD-AGP.txt'
# para$is.normalize=FALSE
# ## AGP estimation
# getAGP(para=para)
# para.s=getPara.sAGP()
# para.s$inputdata='A0SDseg.Rdata'
# para.s$purityfile='A0SD-AGP.txt'
# para.s$savedata='A0SD-sAGP.Rdata'
# ## sAGP estimation
# getsAGP(para=para.s)
# load('A0SD-sAGP.Rdata')
# getSampleCCF(id,new.dd,VCFdir)
# ## End(Not run)

Run the code above in your browser using DataLab