CID.Gibbs (input, outcome, node.names, components, class.outcome = NULL, fill.in.missing.edges = missing(outcome), new.chain = FALSE,
draws = 100, burnin = -1, thin = 10, report = 100, auto.converge = FALSE, extend.max=10, extend.count=100, verbose=2, ...)
"print" (x, ...) "summary" (object, ...) "plot" (x, ...) "print" (x, ...)
likelihood.plot(x, ...) intercept.plot(x, mode = c("standard","trace"), ...) COV.plot(x, mode = c("standard","trace","scatterplot"), ...) LSM.plot(x, ...) SBM.plot(x, ...) MMSBM.plot(x, ...) SR.plot(x, ...)
network.plot (x, fitted.values=FALSE, ...) sociogram.plot (x, component.color=0, vertexcolor, add.labels = TRUE, ...)
n.nodes(object) edge.list(object) is.net.directed(object) net.density(object) outcome(object) node.names(object) inDegree(object) outDegree(object) socio(object) value.mat(CID.Gibbs.object, prob = TRUE) value.mat.mean(object, prob = TRUE) switcheroo(CID.Gibbs.object)