### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run componentwise (logit)-boosting (not tuned)
result <- compBoostCMA(X=golubX, y=golubY, learnind=learnind, mstop = 500)
### show results
show(result)
ftable(result)
plot(result)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run componentwise multivariate (logit)-boosting (not tuned)
result <- compBoostCMA(X=khanX, y=khanY, learnind=learnind, mstop = 1000)
### show results
show(result)
ftable(result)
plot(result)
Run the code above in your browser using DataLab