### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,-1])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run k-nearest neighbours
result <- knnCMA(X=golubX, y=golubY, learnind=learnind, k = 3)
### show results
show(result)
ftable(result)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression
khanX <- as.matrix(khan[,-1])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run knn
result <- knnCMA(X=khanX, y=khanY, learnind=learnind, k = 5)
### show results
show(result)
ftable(result)
Run the code above in your browser using DataLab