Learn R Programming

CNPBayes (version 1.2.2)

HyperparametersMarginal: Create an object of class 'HyperparametersMarginal' for the marginal mixture model

Description

Create an object of class 'HyperparametersMarginal' for the marginal mixture model

Usage

HyperparametersMarginal(k = 0L, mu.0 = 0, tau2.0 = 100, eta.0 = 1, m2.0 = 0.1, alpha, beta = 0.1, a = 1.8, b = 6)

Arguments

k
length-one integer vector specifying number of components (typically 1
mu.0
length-one numeric vector of the mean for the normal prior of the component means
tau2.0
length-one numeric vector of the variance for the normal prior of the component means
eta.0
length-one numeric vector of the shape parameter for the Inverse Gamma prior of the component variances. The shape parameter is parameterized as 1/2 * eta.0.
m2.0
length-one numeric vector of the rate parameter for the Inverse Gamma prior of the component variances. The rate parameter is parameterized as 1/2 * eta.0 * m2.0.
alpha
length-k numeric vector of the shape parameters for the dirichlet prior on the mixture probabilities
beta
length-one numeric vector for the parameter of the geometric prior for nu.0 (nu.0 is the shape parameter of the Inverse Gamma sampling distribution for the component-specific variances). beta is a probability and must be in the interval [0,1].
a
length-one numeric vector of the shape parameter for the Gamma prior used for sigma2.0 (sigma2.0 is the shape parameter of the Inverse Gamma sampling distribution for the component-specific variances)
b
a length-one numeric vector of the rate parameter for the Gamma prior used for sigma2.0 (sigma2.0 is the rate parameter of the Inverse Gamma sampling distribution for the component-specific variances)

Value

An object of class HyperparametersMarginal

Examples

Run this code
HyperparametersMarginal(k=3)

Run the code above in your browser using DataLab