Fit COM-Poisson regression using maximum likelihood estimation. Zero-Inflated COM-Poisson can be fit by specifying a regression for the overdispersion parameter.
glm.cmp(
formula.lambda,
formula.nu = ~1,
formula.p = NULL,
data = NULL,
init = NULL,
fixed = NULL,
control = NULL,
...
)glm.cmp produces an object of either class cmpfit or
zicmpfit, depending on whether zero-inflation is used in the model.
From this object, coefficients and other information can be extracted.
regression formula linked to log(lambda).
The response should be specified here.
regression formula linked to log(nu). The
default, is taken to be only an intercept.
regression formula linked to logit(p). If NULL
(the default), zero-inflation term is excluded from the model.
An optional data.frame with variables to be used with regression formulas. Variables not found here are read from the envionment.
A data structure that specifies initial values. See the helper function get.init.
A data structure that specifies which coefficients should remain fixed in the maximum likelihood procedure. See the helper function get.fixed.
A control data structure. See the helper function
get.control. If NULL, a global default will be used.
other arguments, such as subset and na.action.
Kimberly Sellers, Thomas Lotze, Andrew Raim
The COM-Poisson regression model is $$ y_i \sim \rm{CMP}(\lambda_i, \nu_i), \;\;\; \log \lambda_i = \bm{x}_i^\top \beta, \;\;\; \log \nu_i = \bm{s}_i^\top \gamma. $$
The Zero-Inflated COM-Poisson regression model assumes that \(y_i\) is 0 with probability \(p_i\) or \(y_i^*\) with probability \(1 - p_i\), where $$ y_i^* \sim \rm{CMP}(\lambda_i, \nu_i), \;\;\; \log \lambda_i = \bm{x}_i^\top \beta, \;\;\; \log \nu_i = \bm{s}_i^\top \gamma, \;\;\; \rm{logit} \, p_i = \bm{w}_i^\top \zeta. $$
Kimberly F. Sellers & Galit Shmueli (2010). A Flexible Regression Model for Count Data. Annals of Applied Statistics, 4(2), 943-961.
Kimberly F. Sellers and Andrew M. Raim (2016). A Flexible Zero-Inflated Model to Address Data Dispersion. Computational Statistics and Data Analysis, 99, 68-80.