Fit COM-Poisson regression using maximum likelihood estimation. Zero-Inflated COM-Poisson can be fit by specifying a regression for the overdispersion parameter.
glm.cmp(
formula.lambda,
formula.nu = ~1,
formula.p = NULL,
data = NULL,
init = NULL,
fixed = NULL,
control = NULL,
...
)
glm.cmp
produces an object of either class cmpfit
or
zicmpfit
, depending on whether zero-inflation is used in the model.
From this object, coefficients and other information can be extracted.
regression formula linked to log(lambda)
.
The response should be specified here.
regression formula linked to log(nu)
. The
default, is taken to be only an intercept.
regression formula linked to logit(p)
. If NULL
(the default), zero-inflation term is excluded from the model.
An optional data.frame with variables to be used with regression formulas. Variables not found here are read from the envionment.
A data structure that specifies initial values. See the helper function get.init.
A data structure that specifies which coefficients should remain fixed in the maximum likelihood procedure. See the helper function get.fixed.
A control data structure. See the helper function
get.control. If NULL
, a global default will be used.
other arguments, such as subset
and na.action
.
Kimberly Sellers, Thomas Lotze, Andrew Raim
The COM-Poisson regression model is $$ y_i \sim \rm{CMP}(\lambda_i, \nu_i), \;\;\; \log \lambda_i = \bm{x}_i^\top \beta, \;\;\; \log \nu_i = \bm{s}_i^\top \gamma. $$
The Zero-Inflated COM-Poisson regression model assumes that \(y_i\) is 0 with probability \(p_i\) or \(y_i^*\) with probability \(1 - p_i\), where $$ y_i^* \sim \rm{CMP}(\lambda_i, \nu_i), \;\;\; \log \lambda_i = \bm{x}_i^\top \beta, \;\;\; \log \nu_i = \bm{s}_i^\top \gamma, \;\;\; \rm{logit} \, p_i = \bm{w}_i^\top \zeta. $$
Kimberly F. Sellers & Galit Shmueli (2010). A Flexible Regression Model for Count Data. Annals of Applied Statistics, 4(2), 943-961.
Kimberly F. Sellers and Andrew M. Raim (2016). A Flexible Zero-Inflated Model to Address Data Dispersion. Computational Statistics and Data Analysis, 99, 68-80.