Learn R Programming

COUNT (version 1.3.4)

rwm5yr: rwm5yr

Description

German health registry for the years 1984-1988. Health information for years immediately prior to health reform.

Usage

data(rwm5yr)

Arguments

Format

A data frame with 19,609 observations on the following 17 variables.

Source

German Health Reform Registry, years pre-reform 1984-1988, in Hilbe and Greene (2007)

Details

rwm5yr is saved as a data frame. Count models typically use docvis as response variable. 0 counts are included

References

Hilbe, Joseph M (2014), Modeling Count Data, Cambridge University Press Hilbe, Joseph M (2011), Negative Binomial Regression, Cambridge University Press Hilbe, J. and W. Greene (2008). Count Response Regression Models, in ed. C.R. Rao, J.P Miller, and D.C. Rao, Epidemiology and Medical Statistics, Elsevier Handbook of Statistics Series. London, UK: Elsevier.

Examples

Run this code
library(MASS)
data(rwm5yr)

glmrp <- glm(docvis ~ outwork + female + age + factor(edlevel), family=poisson, data=rwm5yr)
summary(glmrp)
exp(coef(glmrp))

## Not run: 
# library(msme)
# nb2 <- nbinomial(docvis ~ outwork + female + age + factor(edlevel), data=rwm5yr)
# summary(nb2)
# exp(coef(nb2)) 
# 
# glmrnb <- glm.nb(docvis ~ outwork + female + age + factor(edlevel), data=rwm5yr)
# summary(glmrnb)
# exp(coef(glmrnb))
# ## End(Not run)

Run the code above in your browser using DataLab