
Compute the Beta-Binomial probabilities of given ordinal responses, with feeling parameter specified for each observation, and with the same overdispersion parameter for all the responses.
betabinomialcsi(m,ordinal,csivett,phi)
A vector of the same length as ordinal: each entry is the Beta-Binomial probability for the given observation for the corresponding feeling and overdispersion parameters.
Number of ordinal categories
Vector of ordinal responses. Missing values are not allowed: they should be preliminarily deleted or imputed
Vector of feeling parameters of the Beta-Binomial distribution for given ordinal responses
Overdispersion parameter of the Beta-Binomial distribution
Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data,
Communications in Statistics - Theory and Methods, 43, 771--786
Piccolo D. (2015). Inferential issues for CUBE models with covariates.
Communications in Statistics - Theory and Methods, 44(23), 771--786.
betar
, betabinomial
data(relgoods)
m<-10
ordinal<-relgoods$Tv
age<-2014-relgoods$BirthYear
no_na<-na.omit(cbind(ordinal,age))
ordinal<-no_na[,1]; age<-no_na[,2]
lage<-log(age)-mean(log(age))
gama<-c(-0.61,-0.31)
phi<-0.16
csivett<-logis(lage,gama)
pr<-betabinomialcsi(m,ordinal,csivett,phi)
plot(density(pr))
Run the code above in your browser using DataLab