# \donttest{
model <- make_model('X -> Y')
df <- data.frame(X = c(0,1,NA), Y = c(0,0,1))
df |> collapse_data(model)
# Illustrating options
df |> collapse_data(model, drop_NA = FALSE)
df |> collapse_data(model, drop_family = TRUE)
df |> collapse_data(model, summary = TRUE)
# Appropriate behavior given restricted models
model <- make_model('X -> Y') |>
set_restrictions('X[]==1')
df <- make_data(model, n = 10)
df[1,1] <- ''
df |> collapse_data(model)
df <- data.frame(X = 0:1)
df |> collapse_data(model)
# }
# \donttest{
model <- make_model('X->M->Y')
make_events(model, n = 5) |>
expand_data(model)
make_events(model, n = 0) |>
expand_data(model)
# }
# Simple draws
model <- make_model("X -> M -> Y")
make_data(model)
make_data(model, n = 3, nodes = c("X","Y"))
make_data(model, n = 3, param_type = "prior_draw")
make_data(model, n = 10, param_type = "define", parameters = 0:9)
# Data Strategies
# A strategy in which X, Y are observed for sure and M is observed
# with 50% probability for X=1, Y=0 cases
model <- make_model("X -> M -> Y")
make_data(
model,
n = 8,
nodes = list(c("X", "Y"), "M"),
probs = list(1, .5),
subsets = list(TRUE, "X==1 & Y==0"))
# n not provided but inferred from largest n_step (not from sum of n_steps)
make_data(
model,
nodes = list(c("X", "Y"), "M"),
n_steps = list(5, 2))
# Wide then deep
make_data(
model,
n = 8,
nodes = list(c("X", "Y"), "M"),
subsets = list(TRUE, "!is.na(X) & !is.na(Y)"),
n_steps = list(6, 2))
make_data(
model,
n = 8,
nodes = list(c("X", "Y"), c("X", "M")),
subsets = list(TRUE, "is.na(X)"),
n_steps = list(3, 2))
# Example with probabilities at each step
make_data(
model,
n = 8,
nodes = list(c("X", "Y"), c("X", "M")),
subsets = list(TRUE, "is.na(X)"),
probs = list(.5, .2))
# Example with given data
make_data(model, given = "X==1 & Y==1", n = 5)
# \donttest{
model <- make_model('X -> Y')
make_events(model = model)
make_events(model = model, param_type = 'prior_draw')
make_events(model = model, include_strategy = TRUE)
# }
Run the code above in your browser using DataLab