make_model('X -> Y; X <-> Y') |>
inspect("parameters")
make_model('X -> M -> Y; X <-> Y') |>
inspect("parameters")
model <- make_model('X -> M -> Y; X <-> Y; M <-> Y')
inspect(model, "parameters_df")
# Example where set_confound is implemented after restrictions
make_model("A -> B -> C") |>
set_restrictions(increasing("A", "B")) |>
set_confound("B <-> C") |>
inspect("parameters")
# Example where two parents are confounded
make_model('A -> B <- C; A <-> C') |>
set_parameters(node = "C", c(0.05, .95, .95, 0.05)) |>
make_data(n = 50) |>
cor()
# Example with two confounds, added sequentially
model <- make_model('A -> B -> C') |>
set_confound(list("A <-> B", "B <-> C"))
inspect(model, "statement")
# plot(model)
Run the code above in your browser using DataLab