Learn R Programming

CellChat (version 1.0.0)

netVisual_embeddingPairwise: 2D visualization of the joint manifold learning of signaling networks from two datasets

Description

2D visualization of the joint manifold learning of signaling networks from two datasets

Usage

netVisual_embeddingPairwise(
  object,
  slot.name = "netP",
  type = c("functional", "structural"),
  comparison = NULL,
  color.use = NULL,
  point.shape = NULL,
  pathway.remove = NULL,
  pathway.remove.show = TRUE,
  dot.size = c(2, 6),
  label.size = 2.5,
  dot.alpha = 0.5,
  xlabel = "Dim 1",
  ylabel = "Dim 2",
  title = NULL,
  do.label = T,
  show.legend = T,
  show.axes = T
)

Arguments

object

CellChat object

slot.name

the slot name of object that is used to compute centrality measures of signaling networks

type

"functional","structural"

comparison

a numerical vector giving the datasets for comparison. Default are all datasets when object is a merged object

color.use

defining the color for each cell group

point.shape

a numeric vector giving the point shapes. By default point.shape <- c(21, 0, 24, 23, 25, 10, 12), see available shapes at http://www.sthda.com/english/wiki/r-plot-pch-symbols-the-different-point-shapes-available-in-r

pathway.remove

a character vector defining the signaling to remove

pathway.remove.show

whether show the removed signaling names

dot.size

a range defining the size of the symbol

label.size

font size of the text

dot.alpha

transparency

xlabel

label of x-axis

ylabel

label of y-axis

title

main title of the plot

do.label

label the each point

show.legend

whether show the legend

show.axes

whether show the axes

Value