Learn R Programming

ChainLadder (version 0.1.7)

Mse-methods: Methods for Generic Function Mse

Description

Mse is a generic function to calculate mean square error estimations in the chain ladder framework.

Usage

Mse(ModelFit, FullTriangles, ...)

## S3 method for class 'GMCLFit,triangles': Mse(ModelFit, FullTriangles, ...) ## S3 method for class 'MCLFit,triangles': Mse(ModelFit, FullTriangles, mse.method="Mack", ...)

Arguments

ModelFit
An object of class "GMCLFit" or "MCLFit".
FullTriangles
An object of class "triangles". Should be the output from a call of predict.
mse.method
Character strings that specify the MSE estimation method. Only works for "MCLFit". Use "Mack" for the generazliation of the Mack (1993) approach, and "Independence" for the conditional resampling approach in Merz and Wuthrich (20
...
Currently not used.

Value

  • Mse returns an object of class "MultiChainLadderMse" that has the following elements:
  • mse.aycondtional mse for each accdient year
  • mse.ay.estconditional estimation mse for each accdient year
  • mse.ay.procconditional process mse for each accdient year
  • mse.totalcondtional mse for aggregated accdient years
  • mse.total.estconditional estimation mse for aggregated accdient years
  • mse.total.procconditional process mse for aggregated accdient years
  • FullTrianglescompleted triangles

Details

These functions calculate the conditional mean square errors using the recursive formulas in Zhang (2010), which is a generalization of the Mack (1993, 1999) formulas. In the GMCL model, the conditional mean square error for single accident years and aggregated accident years are calcualted as:

$$\hat{mse}(\hat{Y}_{i,k+1}|D)=\hat{B}_k \hat{mse}(\hat{Y}_{i,k}|D) \hat{B}_k + (\hat{Y}_{i,k}' \otimes I) \hat{\Sigma}_{B_k} (\hat{Y}_{i,k} \otimes I) + \hat{\Sigma}_{\epsilon_{i_k}}.$$

$$\hat{mse}(\sum^I_{i=a_k}\hat{Y}_{i,k+1}|D)=\hat{B}_k \hat{mse}(\sum^I_{i=a_k+1}\hat{Y}_{i,k}|D) \hat{B}_k + (\sum^I_{i=a_k}\hat{Y}_{i,k}' \otimes I) \hat{\Sigma}_{B_k} (\sum^I_{i=a_k}\hat{Y}_{i,k} \otimes I) + \sum^I_{i=a_k}\hat{\Sigma}_{\epsilon_{i_k}} .$$

In the MCL model, the conditional mean square error from Merz and Wuthrich (2008) is also available, which can be shown to be equivalent as the following:

$$\hat{mse}(\hat{Y}_{i,k+1}|D)=(\hat{\beta}_k \hat{\beta}_k') \odot \hat{mse}(\hat{Y}_{i,k}|D) + \hat{\Sigma}_{\beta_k} \odot (\hat{Y}_{i,k} \hat{Y}_{i,k}') + \hat{\Sigma}_{\epsilon_{i_k}} +\hat{\Sigma}_{\beta_k} \odot \hat{mse}^E(\hat{Y}_{i,k}|D) .$$

$$\hat{mse}(\sum^I_{i=a_k}\hat{Y}_{i,k+1}|D)=(\hat{\beta}_k \hat{\beta}_k') \odot \sum^I_{i=a_k+1}\hat{mse}(\hat{Y}_{i,k}|D) + \hat{\Sigma}_{\beta_k} \odot (\sum^I_{i=a_k}\hat{Y}_{i,k} \sum^I_{i=a_k}\hat{Y}_{i,k}') + \sum^I_{i=a_k}\hat{\Sigma}_{\epsilon_{i_k}} +\hat{\Sigma}_{\beta_k} \odot \sum^I_{i=a_k}\hat{mse}^E(\hat{Y}_{i,k}|D) .$$

For the Mack approach in the MCL model, the cross-product term $\hat{\Sigma}_{\beta_k} \odot \hat{mse}^E(\hat{Y}_{i,k}|D)$in the above two formulas will drop out.

References

Zhang Y (2010). A general multivariate chain ladder model.Insurance: Mathematics and Economics, 46, pp. 588-599.

Zhang Y (2010). Prediction error of the general multivariate chain ladder model.

See Also

See also MultiChainLadder.