# \donttest{
# Make time-scaled first MPT for Day 2016 data set:
time_tree <- ape::read.tree(text = paste0("(Biarmosuchus_tener:0.5,",
"(((Hipposaurus_boonstrai:3.5,(Bullacephalus_jacksoni:0.75,",
"Pachydectes_elsi:0.75):0.75):0.75,(Lemurosaurus_pricei:7.166666667,",
"(Lobalopex_mordax:4.333333333,((Lophorhinus_willodenensis:3.666666667,",
"(Proburnetia_viatkensis:0.8333333333,(Lende_chiweta:2,",
"(Paraburnetia_sneeubergensis:1,Burnetia_mirabilis:2):1):1.833333333)",
":0.8333333333):0.8333333333,(BP_1_7098:2.25,Niuksenitia_sukhonensis:",
"1.25):1.25):0.8333333333):0.8333333333):3.083333333):1.95,",
"(Ictidorhinus_martinsi:15.9,(RC_20:11.6,(Herpetoskylax_hopsoni:11.3,",
"Lycaenodon_longiceps:0.3):0.3):0.3):0.3):0.3);"))
# Add root age to tree:
time_tree$root.time <- 269.5
# Prune continuous block from day 2016:
cladistic_matrix <- prune_cladistic_matrix(
cladistic_matrix = day_2016,
blocks2prune = 1
)
# Generate nine two million year time bins:
time_bins <- matrix(data = c(seq(from = 270, to = 252, length.out = 10)[1:9],
seq(from = 270, to = 252, length.out = 10)[2:10]), ncol = 2,
dimnames = list(LETTERS[1:9], c("fad", "lad")))
# Set class as timeBins:
class(time_bins) <- "timeBins"
# Run test rates function for each clade partition:
test_rates_output <- test_rates(
time_tree = time_tree,
cladistic_matrix = cladistic_matrix,
clade_partitions = as.list(x = seq(
from = ape::Ntip(phy = time_tree) + 1,
to = ape::Ntip(phy = time_tree) + ape::Nnode(time_tree), by = 1
)),
branch_partitions = lapply(X = as.list(x = seq(
from = 1,
to = length(x = time_tree$edge.length), by = 1
)), as.list),
time_bins = time_bins
)
# Plot ninth branch partition model (lowest AIC value):
plot_rates_tree(
test_rates_output = test_rates_output,
model_type = "branch", model_number = 9
)
# Plot third clade partition model (lowest AIC value):
plot_rates_tree(
test_rates_output = test_rates_output,
model_type = "clade", model_number = 3
)
# }
Run the code above in your browser using DataLab