Although objects can be created using new
, the better method is
to use the MultiTtestPaired
or MultiTtestUnequal
functions. In the simplest case, you simply pass in a data matrix
and a logical vector assigning classes to the columns (and, in the
case of a paired t-test, a numeric vector describing the pairing), and
the constructor performs row-by-row two-sample t-tests and computes
the associated (single test) p-values. To adjust for multiple
testing, you can pass the p-values on to the Bum
class.
If you use a factor instead of a logical vector, then the t-test
compares the first level of the factor to everything else. To handle
the case of multiple classes, see the MultiLinearModel
class.
As with other class comparison functions that are part of the OOMPA,
we can also perform statistical tests on
ExpressionSet
objects from
the BioConductor libraries. In this case, we pass in an
ExpressionSet
object along with the name of a factor to use for
splitting the data.