# NOT RUN {
showClass("Mosaic")
## simulate data from three different sample groups
d1 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
d2 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
d3 <- matrix(rnorm(100*10, rnorm(100, 0.5)), nrow=100, ncol=10, byrow=FALSE)
dd <- cbind(d1, d2, d3)
kind <- factor(rep(c('red', 'green', 'blue'), each=10))
## prepare the Mosaic object
m <- Mosaic(dd,
sampleMetric='pearson',
geneMetric='spearman',
center=TRUE,
usecor=TRUE)
summary(m)
## The default plot with red-green color map
plot(m, col=redgreen(64))
## change to a blue-yellow color map, and mark the four top splits in the
## sample direction with a color bar along the top
plot(m, col=blueyellow(128), sampleClasses=4,
sampleColors=c('red', 'green', 'blue', 'black'))
## This time, mark the three classes that we know are there
plot(m, col=blueyellow(128), sampleClasses=kind,
sampleColors=c('red', 'green', 'blue'))
plot(m, col=blueyellow(128),
geneClasses=3, geneColors=c('red', 'green', 'black'))
## In addition, mark the top 5 splits in the gene dendrogram
plot(m,
col=blueyellow(128),
sampleClasses=kind,
sampleColors=c('red', 'green', 'black'),
geneClasses=5,
geneColors=c('cyan', 'magenta', 'royalblue', 'darkgreen', 'orange'))
## plot the sample dendrogram by itself
cols <- as.character(kind)
pltree(m, labels=1:30, colors=cols)
## cleanup
rm(d1, d2, d3, dd, kind, cols, m)
# }
Run the code above in your browser using DataLab