# NOT RUN {
p = 30
n = 50
beta = c(1, -0.8, 0.6, 0, 0, -1.5, -0.5, 1.2)
beta = c(beta, rep(0, times = p - length(beta)))
Comp_data = comp_Model(n = n, p = p, beta = beta, intercept = FALSE)
cvm1 <- cv.compCL(y = Comp_data$y, Z = Comp_data$X.comp,
Zc = Comp_data$Zc, intercept = Comp_data$intercept)
plot(cvm1)
coef(cvm1)
## selection by "lam.min" criterion
which(abs(coef(cvm1, s = "lam.min")[1:p]) > 0)
## selection by "lam.1se" criterion
which(abs(coef(cvm1, s= "lam.1se")[1:p]) > 0)
Comp_data2 = comp_Model(n = 30, p = p, beta = Comp_data$beta, intercept = FALSE)
y_hat = predict(cvm1, Znew = Comp_data2$X.comp, Zcnew = Comp_data2$Zc)
plot(Comp_data2$y, y_hat,
xlab = "Observed response", ylab = "Predicted response")
# }
Run the code above in your browser using DataLab