# NOT RUN {
df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[1, ] <- c(-0.5, -0.5, -0.5 , -1, -1)
beta_C_true[2, ] <- c(0.8, 0.8, 0.7, 0.6, 0.6)
beta_C_true[3, ] <- c(-0.8, -0.8 , 0.4 , 1 , 1)
beta_C_true[4, ] <- c(0.5, 0.5, -0.6 ,-0.6, -0.6)
n_train = 50
n_test = 30
k_list <- c(4,5)
Data <- Fcomp_Model(n = n_train, p = p, m = 0, intercept = TRUE,
SNR = 4, sigma = 3, rho_X = 0.6, rho_T = 0,
df_beta = df_beta, n_T = 20, obs_spar = 1, theta.add = FALSE,
beta_C = as.vector(t(beta_C_true)))
arg_list <- as.list(Data$call)[-1]
arg_list$n <- n_test
Test <- do.call(Fcomp_Model, arg_list)
GIC_m1 <- GIC.FuncompCGL(y = Data$data$y, X = Data$data$Comp,
Zc = Data$data$Zc, intercept = Data$data$intercept,
k = k_list)
y_hat <- predict(GIC_m1, Znew = Test$data$Comp, Zcnew = Test$data$Zc)
predict(GIC_m1, Znew = Test$data$Comp, Zcnew = Test$data$Zc, s = NULL, k = k_list)
plot(Test$data$y, y_hat, xlab = "Observed response", ylab = "Predicted response")
# }
Run the code above in your browser using DataLab